Skip to main content

Roles of HSF1 and Heat Shock Proteins in Cancer

  • Chapter
  • First Online:
Hyperthermic Oncology from Bench to Bedside

Abstract

Heat shock proteins (HSPs) that are induced by various stresses, such as heat, work to protect cells from detrimental environmental stresses as molecular chaperones. The expression of HSPs is regulated by a specific transcription factor HSF1 (heat shock factor 1). The HSF1-HSPs system has long been considered to have an endogenous cytoprotective function. It has recently been shown, however, that HSF1 and HSPs are essential for cancer cell development and progression, and the HSF1-HSPs system seems to be co-opted or hijacked by cancer cells for their own survival. In this review, recent progress in understanding the roles of HSF1 and HSPs in cancer is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ritossa F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia. 1962;18:571–3.

    Article  CAS  Google Scholar 

  2. Muchowski PJ, Wacker JL. Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci. 2005;6:11–22.

    Article  CAS  PubMed  Google Scholar 

  3. Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature. 2011;475:324–32.

    Article  CAS  PubMed  Google Scholar 

  4. Buchberger A, Bukau B, Sommer T. Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol Cell. 2010;40:238–52.

    Article  CAS  PubMed  Google Scholar 

  5. Ohtsuka K, Kawashima D, Gu Y, et al. Inducers and co-inducers of molecular chaperones. Int J Hyperthermia. 2005;21:703–11.

    Article  CAS  PubMed  Google Scholar 

  6. Kobayashi Y, Kume A, Li M, et al. Chaperones Hsp70 and Hsp40 suppress aggregate formation and apoptosis in cultured neuronal cells expressing truncated androgen receptor protein with expanded polyglutamine tract. J Biol Chem. 2000;275:8772–8.

    Article  CAS  PubMed  Google Scholar 

  7. Tohnai G, Adachi H, Katsuno M, et al. Paeoniflorin eliminates a mutant AR via NF-YA-dependent proteolysis in spinal and bulbar muscular atrophy. Hum Mol Genet. 2014;23:3552–65.

    Article  CAS  PubMed  Google Scholar 

  8. Kondo N, Katsuno M, Adachi H, et al. Heat shock factor-1 influences pathological lesion distribution of polyglutamine-induced neurodegeneration. Nat Commun. 2013;4:1405.

    Article  PubMed  Google Scholar 

  9. Bukau B, Weissman J, Horwich A. Molecular chaperones and protein quality control. Cell. 2006;125:443–51.

    Article  CAS  PubMed  Google Scholar 

  10. Dai C, Whitesell L, Rogers AB, et al. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell. 2007;130:1005–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sherman MY, Gabai VL. Hsp70 in cancer: back to the future. Oncogene. 2014;34:4153–61.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ciocca DR, Arrigo AP, Calderwood SK. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch Toxicol. 2013;87:19–48.

    Article  CAS  PubMed  Google Scholar 

  13. Parsell DA, Lindquist S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet. 1993;27:437–96.

    Article  CAS  PubMed  Google Scholar 

  14. Ciocca DR, Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones. 2005;10:86–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mjahed H, Girodon F, Fontenay M, et al. Heat shock proteins in hematopoietic malignancies. Exp Cell Res. 2012;318:1946–58.

    Article  CAS  PubMed  Google Scholar 

  16. Santagata S, Hu R, Lin NU, et al. High levels of nuclear heat-shock factor 1 (HSF1) are associated with poor prognosis in breast cancer. Proc Natl Acad Sci U S A. 2011;108:18378–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Calderwood SK. HSF1, a versatile factor in tumorogenesis. Curr Mol Med. 2012;12:1102–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jin X, Moskophidis D, Mivechi NF. Heat shock transcription factor 1 is a key determinant of HCC development by regulating hepatic steatosis and metabolic syndrome. Cell Metab. 2011;14:91–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gong J, Weng D, Eguchi T, et al. Targeting the hsp70 gene delays mammary tumor initiation and inhibits tumor cell metastasis. Oncogene. 2015. doi:10.1038/onc.2015.1.

    Google Scholar 

  20. Page TJ, Sikder D, Yang L, et al. Genome-wide analysis of human HSF1 signaling reveals a transcriptional program linked to cellular adaptation and survival. Mol Biosyst. 2006;2:627–39.

    Article  CAS  PubMed  Google Scholar 

  21. Mendillo ML, Santagata S, Koeva M, et al. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell. 2012;150:549–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Solimini NL, Luo J, Elledge SJ. Non-oncogene addiction and the stress phenotype of cancer cells. Cell. 2007;130:986–8.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao YH, Zhou M, Liu H, et al. Upregulation of lactate dehydrogenase A by ErbB2 through heat shock factor 1 promotes breast cancer cell glycolysis and growth. Oncogene. 2009;28:3689–701.

    Article  CAS  PubMed  Google Scholar 

  24. Li YM, Zhou BP, Deng J, et al. A hypoxia-independent hypoxia-inducible factor-1 activation pathway induced by phosphatidylinositol-3 kinase/Akt in HER2 overexpressing cells. Cancer Res. 2005;65:3257–63.

    CAS  PubMed  Google Scholar 

  25. Schulz R, Streller F, Scheel AH, et al. HER2/ErbB2 activates HSF1 and thereby controls HSP90 clients including MIF in HER2-overexpressing breast cancer. Cell Death Dis. 2014;5:e980. doi:10.1038/cddis.2013.508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kalin TV, Ustiyan V, Kalinichenko VV. Multiple faces of FoxM1 transcription factor: lessons from transgenic mouse models. Cell Cycle. 2011;10:396–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dai B, Gong A, Jing Z, et al. Forkhead box M1 is regulated by heat shock factor 1 and promotes glioma cells survival under heat shock stress. J Biol Chem. 2013;288:1634–42.

    Article  CAS  PubMed  Google Scholar 

  28. López de Silanes I, Fan J, Yang X, et al. Role of the RNA-binding protein HuR in colon carcinogenesis. Oncogene. 2003;22:7146–54.

    Article  PubMed  Google Scholar 

  29. Gabai VL, Meng L, Kim G, et al. Heat shock transcription factor Hsf1 is involved in tumor progression via regulation of hypoxia-inducible factor 1 and RNA-binding protein HuR. Mol Cell Biol. 2012;32:929–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chou SD, Murshid A, Eguchi T, et al. HSF1 regulation of β-catenin in mammary cancer cells through control of HuR/elavL1 expression. Oncogene. 2015;34:2178–88.

    Article  CAS  PubMed  Google Scholar 

  31. Chou SD, Prince T, Gong J, et al. mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PLoS One. 2012;7(6):e39679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gotoh J, Obata M, Yoshie M, et al. Cyclin D1 over-expression correlates with beta-catenin activation, but not with H-ras mutations, and phosphorylation of Akt, GSK3 beta and ERK1/2 in mouse hepatic carcinogenesis. Carcinogenesis. 2003;24:435–42.

    Article  CAS  PubMed  Google Scholar 

  33. Mazumdar A, Wang RA, Mishra SK, et al. Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nat Cell Biol. 2001;3:30–7.

    Article  CAS  PubMed  Google Scholar 

  34. Khaleque MA, Bharti A, Gong J, et al. Heat shock factor 1 represses estrogen-dependent transcription through association with MTA1. Oncogene. 2008;27:1886–93.

    Article  CAS  PubMed  Google Scholar 

  35. Isaacs JS, Jung YJ, Mimnaugh EG, et al. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway. J Biol Chem. 2002;277:29936–44.

    Article  CAS  PubMed  Google Scholar 

  36. Vaahtomeri K, Mäkelä TP. Molecular mechanisms of tumor suppression by LKB1. FEBS Lett. 2011;585:944–51.

    Article  CAS  PubMed  Google Scholar 

  37. Gaude H, Aznar N, Delay A, et al. Molecular chaperone complexes with antagonizing activities regulate stability and activity of the tumor suppressor LKB1. Oncogene. 2012;31:1582–91.

    Article  CAS  PubMed  Google Scholar 

  38. Sossey-Alaoui K, Li X, Ranalli TA, et al. WAVE3-mediated cell migration and lamellipodia formation are regulated downstream of phosphatidylinositol 3-kinase. J Biol Chem. 2005;280:21748–55.

    Article  CAS  PubMed  Google Scholar 

  39. Sossey-Alaoui K, Safina A, Li X, et al. Down-regulation of WAVE3, a metastasis promoter gene, inhibits invasion and metastasis of breast cancer cells. Am J Pathol. 2007;170:2112–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Teng Y, Ngoka L, Mei Y, et al. HSP90 and HSP70 proteins are essential for stabilization and activation of WASF3 metastasis-promoting protein. J Biol Chem. 2012;287:10051–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Eustace BK, Sakurai T, Stewart JK, et al. Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol. 2004;6:507–14.

    Article  CAS  PubMed  Google Scholar 

  42. Sims JD, McCready J, Jay DG. Extracellular heat shock protein (Hsp)70 and Hsp90α assist in matrix metalloproteinase-2 activation and breast cancer cell migration and invasion. PLoS One. 2011;6:e18848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Colvin TA, Gabai VL, Gong J, et al. Hsp70-Bag3 interactions regulate cancer-related signaling networks. Cancer Res. 2014;74:4731–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ryu J, Kaul Z, Yoon AR, et al. Identification and functional characterization of nuclear mortalin in human carcinogenesis. J Biol Chem. 2014;289:24832–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hong DS, Banerji U, Tavana B, et al. Targeting the molecular chaperone heat shock protein 90 (HSP90): lessons learned and future directions. Cancer Treat Rev. 2013;39:375–87.

    Article  CAS  PubMed  Google Scholar 

  46. Neckers L, Workman P. Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res. 2012;18:64–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Massey AJ, Williamson DS, Browne H. A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells. Cancer Chemother Pharmacol. 2010;66:535–45.

    Article  CAS  PubMed  Google Scholar 

  48. Leu JI, Pimkina J, Frank A, et al. A small molecule inhibitor of inducible heat shock protein 70. Mol Cell. 2009;36:15–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Balaburski GM, Leu JI, Beeharry N, et al. A modified HSP70 inhibitor shows broad activity as an anticancer agent. Mol Cancer Res. 2013;11:219–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stangl S, Gehrmann M, Riegger J, et al. Targeting membrane heat-shock protein 70 (Hsp70) on tumors by cmHsp70.1 antibody. Proc Natl Acad Sci U S A. 2011;108:733–8.

    Article  CAS  PubMed  Google Scholar 

  51. Goloudina AR, Demidov ON, Garrido C. Inhibition of HSP70: a challenging anti-cancer strategy. Cancer Lett. 2012;325:117–24.

    Article  CAS  PubMed  Google Scholar 

  52. Xia Y, Liu Y, Rocchi P, et al. Targeting heat shock factor 1 with a triazole nucleoside analog to elicit potent anticancer activity on drug-resistant pancreatic cancer. Cancer Lett. 2012;318:145–53.

    Article  CAS  PubMed  Google Scholar 

  53. Zaarur N, Gabai VL, Porco Jr JA, et al. Targeting heat shock response to sensitize cancer cells to proteasome and Hsp90 inhibitors. Cancer Res. 2006;66:1783–91.

    Article  CAS  PubMed  Google Scholar 

  54. Schilling D, Kühnel A, Konrad S, et al. Sensitizing tumor cells to radiation by targeting the heat shock response. Cancer Lett. 2015;360:294–301.

    Article  CAS  PubMed  Google Scholar 

  55. Santagata S, Mendillo ML, Tang YC, et al. Tight coordination of protein translation and HSF1 activation supports the anabolic malignant state. Science. 2013;341:1238303.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kregel KC. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol. 2002;92:2177–86.

    Article  CAS  PubMed  Google Scholar 

  57. Neef DW, Jaeger AM, Thiele DJ. Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nat Rev Drug Discov. 2011;10:930–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Whitesell L, Lindquist S. Inhibiting the transcription factor HSF1 as an anticancer strategy. Expert Opin Ther Targets. 2009;13:469–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenzo Ohtsuka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Ohtsuka, K. (2016). Roles of HSF1 and Heat Shock Proteins in Cancer. In: Kokura, S., Yoshikawa, T., Ohnishi, T. (eds) Hyperthermic Oncology from Bench to Bedside. Springer, Singapore. https://doi.org/10.1007/978-981-10-0719-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0719-4_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0717-0

  • Online ISBN: 978-981-10-0719-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics