Skip to main content

Abstract

This chapter considers the key issues of, and challenges for, the business development of forest-based bioproducts, defining the conditions and improvement potential for different product types: established forest products (building materials, paper and wood energy), potential large-volume bioproducts (e.g. liquid biofuels), and high value-added products (biomaterials, new chemicals, and pharmaceuticals). These products’ respective competitive position, including success factors, are analyzed together with their innovation and market development potential, barriers, and production economics. We illustrate that key challenges differ between “old” bioproducts such as lumber, where progress is connected with design development, and the incremental improvement of industrial processes, and “radical” innovations of new materials and substances, which involve new market development. The economic conditions for the production and marketing of bioproducts are discussed. The chapter describes the innovation process for forest-based products and challenges to a successful market launch, using examples illustrating the range of potential bioproducts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brege S, Stehn L, Nord T (2013) Integrated design and production of multi-storey timber frame houses production effects caused by customer-oriented design. Int J Prod Econ 77:259–269

    Google Scholar 

  • Buongiorno J, Zhu S, Raunikar R, Prestemon J P (2012) Outlook to 2060 for world forests and forest industries: a technical document supporting the Forest Service 2010 RPA assessment U S Department of Agriculture Forest Service Southern Research Station Techical Report SRS-151 Asheville NC

    Google Scholar 

  • Centi G, Lanzafame P, Perathoner S (2011) Analysis of the alternative routes in the catalytic transformation of lignocellulosic materials. Catal Today 167:14–30

    Article  CAS  Google Scholar 

  • Duchesne LC, Wetzel S (2003) The bioeconomy and the forestry sector: changing markets and new opportunities. For Chronicle 79(5):860–864

    Article  Google Scholar 

  • EC (2012) Innovating for sustainable growth: a bioeconomy for Europe. European Commission Brussels 13, Feb 2012 COM(2012)

    Google Scholar 

  • EC (2013) A new EU Forest Strategy: for forests and the forest-based sector. European Commission Brussels

    Google Scholar 

  • Ecolabel Index (2015). http://www.ecolabelindex.com/. Accessed 11/5/2015

  • EFSOS (2010) The European forest sector outlook study II 2010–2030. UNECE/FAO, Geneva

    Google Scholar 

  • Enriquez-Cabot J (1998) Genomics and the worlds economy. Sci Mag 281:925–926

    Google Scholar 

  • EU Horizon2020 (2015) Horizon 2020: the EU framework programme for research and innovation. https://ec.europa.eu/programmes/horizon2020/. Accessed 29 Nov 2015

  • FAO (2008) Contribution of the forestry sector to national economies 1990–2006. Food and Agriculture Organization of the United Nations, Working paper: FSFM/ACC/08. Rome 180 p

    Google Scholar 

  • FAO (2010) Global forest assessment 2010. Food and Agriculture Organization of the United Nations Forestry paper: 163 Rome 340 p

    Google Scholar 

  • FAO (2014) State of the World’s Forests Enhancing the socioeconomic benefits from forests. Food and Agriculture Organization of the United Nations (FAO) Rome 133 p

    Google Scholar 

  • FAO (2015) FAOSTAT http://faostat3.fao.org/download/F/FO/E. Accessed 11/5/2015. Food and Agriculture Organization of the United Nations, Rome

  • Fitzpatrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101:8915–8922

    Article  CAS  Google Scholar 

  • Forest industries Finland (2013) Sustainable growth from bioeconomy—The Finnish Bioeconomy Strategy. Helsinki

    Google Scholar 

  • Fowler PA, Hughes JM, Elias RM (2006) Biocomposites: technology environmental credentials and market forces. J Sci Food Agric 86(12):1781–1789

    Article  CAS  Google Scholar 

  • Fullerton DF, Bruce N, Gordon SB (2008) Indoor air pollution from biomass fuel smoke is a major health concern in the developing world. Trans R Soc Trop Med Hyg 102:843–851

    Article  Google Scholar 

  • FTP (2015) Horizons—vision 2030 for the European forest-based sector. http://www.forestplatform.org/files/FTP_Vision_revision/FTP_renewed_Vision_2030.pdf. Accessed 11/5/2015

  • Glesinger E (1949) The coming age of wood. Simon and Schuster, NY

    Google Scholar 

  • Goldstein IS (1978) Chemicals from wood. Paper presented at the eighth World Forestry Congress, Djakarta

    Google Scholar 

  • Gordon SB, Bruce NG, Grigg J, Hibberd PL, Kurmi OP, Lam KH, Mortimer K, Asante KP, Balakrishnan K, Balmes J, Bar-Zeev N, Bates MN, Breysse PN, Buist S, Chen Z, Havens D, Jack D, Jindal S, Kan H, Mehta S, Moschovis P, Naeher L, Patel A, Perez-Padilla R, Pope P, Rylance J, Semple S, Martin WJ (2014) Respiratory risks from household air pollution in low and middle income countries. Lancet Respir Med 2014:1–34

    Google Scholar 

  • Hall R, Smolkers R, Ernsting A, Lovera S, Alvarez I (2012) Bioeconomy versus biodiversity. Global Forest Coalition. 18 http://globalforestcoalition.org/wp-content/uploads/2012/04/Bioecono-vs-biodiv-report-with-frontage-FINAL.pdf. 31/10/14

  • Hardy RWF (2002) The bio-based economy. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria VA

    Google Scholar 

  • Heikenfeld J, Drzaic P, Yeo J-S, Koch T (2011) A critical review of the present and future prospects for electronic paper. J SID 19(2):129–156

    Google Scholar 

  • Hurmekoski E, Hetemäki L (2013) Studying the future of the forest sector: review and implications for long-term outlook studies. For Policy Econ 34:17–29

    Google Scholar 

  • Hämäläinen S, Näyhä A, Pesonen H-L (2011) Forest biorefineries—A business opportunity for the Finnish forest cluster. J Cleaner Prod 19:1884–1891

    Google Scholar 

  • IEA (2011) Technology roadmap—biofuels for transport. International Energy Agency, Paris, France 62 p

    Google Scholar 

  • IEA (2012) Technology roadmap—bioenergy for heat and power. International Energy Agency, Paris, France 62 p

    Google Scholar 

  • IEA-Bioenergy (2012) Bio-based chemicals—value added products from biorefineries. International Energy Agency Task 42 Biorefinery, Paris, France, 34 p

    Google Scholar 

  • IPCC (2011) Renewable energy sources and climate change mitigation. In: Edenhofer O et al (eds) Special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2014) Climate Change 2014: Mitigation of Climate Change. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Kircher M (2012a) The transition to a bioeconomy: emerging from the oil age. Biofuels Bioprod Biorefin Biofpr 6(4):369–375

    Article  CAS  Google Scholar 

  • Kircher M (2012b) The transition to a bioeconomy: national perspectives. Biofuels Bioprod Biorefin Biofpr 6(3):240–245

    Article  CAS  Google Scholar 

  • Kircher M (2014) The emerging bioeconomy: industrial drivers global impact and international strategies. Ind Biotechnol 10:11–18

    Google Scholar 

  • Lambin EF, Meyfroidt P (2011) Global land use change economic globalization and the looming land scarcity. Proc Natl Acad Sci 108(9):3465–3472

    Article  CAS  Google Scholar 

  • Lauri P, Havlík P, Kindermann G, Forsell N, Böttcher H, Obersteiner M (2014) Woody biomass energy potential in 2050. Energy Policy 66:19–31

    Article  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels platform chemicals and biorefinery concept. Prog Energy Combust Sci 37:522–550

    Article  Google Scholar 

  • Mizrachi E, Mansfield SD, Myburg AA (2012) Cellulose factories: advancing bioenergy production from forest trees. New Phytol 194(1):54–62

    Article  CAS  Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14:578–597

    Article  CAS  Google Scholar 

  • OECD (2011) Towards green growth. Organisation for economic co-operation and development, Paris, 144 p

    Google Scholar 

  • Pfau SF, Hagens JE, Dankbaar B, Smits AJM (2014) Visions of sustainability in bioeconomy research. Sustainability 2014(6):1222–1249

    Article  Google Scholar 

  • Poudel BC, Sathre R, Bergh J, Gustavsson L, Lundström A, Hyvönen R (2012) Potential effects of intensive forestry on biomass production and total carbon balance in north-central Sweden. Environ Sci Policy 15:106–124

    Article  Google Scholar 

  • Philip J (2013) OECD policies for bioplastics in the context of a bioeconomy 2013. Ind Biotechnol 19–21

    Google Scholar 

  • Posada JA, Patel AD, Roes A, Blok K, Faaij APC, Pate MK (2013) Potential of bioethanol as a chemical building block for biorefineries: preliminary sustainability assessment of 12 bioethanol-based products. Bioresour Technol 135:490–499

    Article  CAS  Google Scholar 

  • PricewaterhouseCoopers (2013) Global forest paper & packaging industry survey 2013 edition—survey of 2012 results, Ontario, Canada

    Google Scholar 

  • Puddister D, Dominy SWJ, Baker JA, Morris DM, Maure J, Rice JA, Jones TA, Majumdar I, Hazlett PW, Titus BD, Fleming RL, Wetzel S (2011) Opportunities and challenges for Ontario’s forest bioeconomy. Forestry Chronicle 87(4):468–477

    Article  Google Scholar 

  • Pülzl H, Kleinschmit D, Arts B (2014) Bioeconomy—an emerging meta-discourse affecting forest discourses? Scand J For Res 9(4):386–395

    Article  Google Scholar 

  • Richardson B (2012) From a fossil-fuel to a bio-based economy: the politics of industrial biotechnology. Environ Plann C-Government Policy 30(2):282–296

    Article  Google Scholar 

  • Roos A, Lindström M, Heuts L, Hylander N, Lind E, Nielsen C (2014) Innovation diffusion of new wood-based materials—reducing the “time to market”. Scand J For Res 29(4):394–401

    Article  Google Scholar 

  • Räty T, Lindqvist D, Nuutinen T, Nyrud AQ, Perttula S, Riala M, Roos A, Tellnes L GF, Toppinen A, Wang L (2012) Communicating the environmental performance of wood products. In: Working papers of the Finnish Forest Research Institute, 230 Vantaa, Finland

    Google Scholar 

  • Sandén B, Pettersson K (eds) (2014) Systems perspectives on biorefineries 2014. Chalmers University of Technology, Göteborg, Sweden. ISBN 978-91-980973-2-0-

    Google Scholar 

  • Sardén Y (2005) Complexity and learning in wood frame housing—the case of a solid wood pilot project, PhD thesis, LTU-DT-2005: 43, Luleå University of Technology, Luleå

    Google Scholar 

  • Shvidenko A, Barber C V, Persson R (2005) Forest Systems. Ch 21. In: Rashid Hassan R, Scholes NA (eds) Ecosystems and human well-being: current state and trends, vol 1. Millennium Ecosystem Assessment Series. Island Press, Washington DC

    Google Scholar 

  • Shen L, Worrell E, Patel M (2010) Environmental impact assessment of man-made cellulose fibres. Resour Conserv Recycl 55(2):260–274

    Article  Google Scholar 

  • Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101:1570–1580

    Article  CAS  Google Scholar 

  • Staffas L, Gustavsson M, McCormick K (2013) Strategies and policies for the bioeconomy and bio-based economy: an analysis of official national approaches. Sustainability 5:2751–2769

    Article  Google Scholar 

  • Sunderlin WD, Dewi S, Puntodewo A, Muller D, Angelsen A, Epprecht M (2008) Why forests are important for global poverty alleviation: a spatial explanation. Ecol Soc 13(2):Art 24

    Google Scholar 

  • Swedish Forest Industries Federation (2012) The forest industry—the driver for a sustainable bioeconomy—Sustainability Report 2012, Stockholm

    Google Scholar 

  • TEEB (2010) The economics of ecosystems and biodiversity: mainstreaming the economics of nature: a synthesis of the approach conclusions and recommendations of TEEB. The economics of ecosystems and biodiversity (TEEB). Progress Press, Malta

    Google Scholar 

  • Tesfaye Y (2011) Participatory forest management for sustainable livelihoods in the Bale Mountains Southern Ethiopia. PhD thesis. Acta Universitatis agriculturae, Sueciae Swedish University of Agricultural Sciences, Uppsala, Sweden

    Google Scholar 

  • United Nations (2012) The future we want. United Nation Conference on Sustainable Development, Rio de Janeiro, Brazil

    Google Scholar 

  • UNECE/FAO (2013) Forest products annual market review. United Nations Economic Commission for Europe/Food and Agriculture Organization of the United Nations, Geneva

    Google Scholar 

  • UNDESA (2014) World Urbanization Prospects 2014 revision. United Nation Department of Economic and Social Affairs, New York, United States

    Google Scholar 

  • UNEP (2011) Forests—investing in natural capital. United Nations Environment Programme 193 p

    Google Scholar 

  • White House (2012) National bioeconomy blueprint. Washington, DC, 43 p

    Google Scholar 

  • Wellisch M, Jungmeier G, Karbowski A, Patel MK, Rogulska M (2010) Biorefinery systems—potential contributors to sustainable innovation. Biofuels Bioprod Biorefining-Biofpr 4(3):275–286

    Article  CAS  Google Scholar 

  • World Steel Association (2015) Statistics. https://www.worldsteel.org/. Accessed 11 May 2015

  • Zini E, Scandola M (2011) Green composites: an overview. Polym Compos 32(12):1905–1915

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Roos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Roos, A. (2016). Business—Bioproducts in the Bioeconomy. In: Kutnar, A., Muthu, S. (eds) Environmental Impacts of Traditional and Innovative Forest-based Bioproducts. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-10-0655-5_6

Download citation

Publish with us

Policies and ethics