Skip to main content

Insights on Vision Derived from Studying Human Single Neurons

  • Chapter
  • First Online:
Computational and Cognitive Neuroscience of Vision

Part of the book series: Cognitive Science and Technology ((CSAT))

Abstract

Investigating the living brain, and in particular relating its activity to behavior is one of the most important challenges in neuroscience. Researchers use many different techniques to explore this relationship. Careful observation of patients with brain lesions or neuroimaging methods such as functional magnetic resonance imaging (fMRI), electroencephalography (EEG), or near infra-red spectroscopy (NIRS) are examples of procedures which allow researchers to make inferences about brain activity in a non-invasive way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adolphs R, Gosselin F, Buchanan TW, Tranel D, Schyns P, Damasio AR (2005) A mechanism for impaired fear recognition after amygdala damage. Nature 433:68–72

    Article  Google Scholar 

  • Adolphs R, Kawasaki H, Tudusciuc O, Howard MA, Heller AC, Sutherling WW, Philpott L, Ross IB, Mamelak AN, Rutishauser U (2014) Electrophysiological responses to faces in the human amygdala. In: Fried I, Rutishauser U, Cref U, Kreiman G (eds) Single neuron studies of the human brain. MIT Press, Boston, pp 229–247

    Google Scholar 

  • Adolphs R, Tranel D, Damasio H, Damasio A (1994) Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372:669–672

    Article  Google Scholar 

  • Barlow HB (2009) Single units and sensation: a neuron doctrine for perceptual psychology? Perception 38:371–394

    Article  Google Scholar 

  • Bettus G, Ranjeva JP, Wendling F, BĂ©nar CG, Confort-Gouny S, RĂ©gis J, Chauvel P, Cozzone PJ, Lemieux L, Bartolomei F, Guye M (2011) Interictal functional connectivity of human epileptic networks assessed by intracerebral EEG and BOLD signal fluctuations. PLoS ONE 6:e20071

    Article  Google Scholar 

  • Biederman I, Bederman I (1987) Recognition-by-components: a theory of human image understanding. Psychol Rev 94:115–147

    Article  Google Scholar 

  • Cerf M, Thiruvengadam N, Mormann F, Kraskov A, Quiroga RQ, Koch C, Fried I (2010) On-line, voluntary control of human temporal lobe neurons. Nature 467:1104–1108

    Article  Google Scholar 

  • Decharms R, Zador A (2000) Neural representation and the cortical code. Annu Rev Neurosci:613–647

    Google Scholar 

  • Ekman P, Friesen WV (1976) Pictures of Facial Affect. Consulting Psychologists Press, Palo Alto, CA

    Google Scholar 

  • Engel J, Kuhl DE, Phelps ME, Mazziotta JC (1982) Interictal cerebral glucose metabolism in partial epilepsy and its relation to EEG changes. Ann Neurol 12:510–517

    Article  Google Scholar 

  • Fried I, MacDonald KA, Wilson CL (1997) Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron 18:753–765

    Google Scholar 

  • Gelbard-Sagiv H, Mukamel R, Harel M, Malach R, Fried I (2008) Internally generated reactivation of single neurons in human hippocampus during free recall. Science 322:96–101

    Article  Google Scholar 

  • Grill-Spector K, Malach R (2004) The human visual cortex. Annu Rev Neurosci 27:649–677

    Article  Google Scholar 

  • Gross CG (1994) How inferior temporal cortex became a visual area. Cereb Cortex 4:455–469

    Article  Google Scholar 

  • Gross CG (2002) Genealogy of the “grandmother cell”. Neuroscientist 8:512–518

    Article  Google Scholar 

  • Hanes DP, Thompson KG, Schall JD (1995) Relationship of presaccadic activity in frontal eye field and supplementary eye field to saccade initiation in macaque: Poisson spike train analysis. Exp Brain Res 103:85–96

    Article  Google Scholar 

  • Harding AJ, Halliday GM, Kril JJ (1998) Variation in hippocampal neuron number with age and brain volume 8:710–718

    Google Scholar 

  • Henze DA, Borhegyi Z, Csicsvari J, Mamiya A, Harris KD, BuzsĂĄki G (2000) Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J Neurophysiol 84:390–400

    Google Scholar 

  • Hubel D, Wiesel T (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol:106–154

    Google Scholar 

  • Ison M, Quiroga R (2008) Selectivity and invariance for visual object perception. Front Biosci:4889–4903

    Google Scholar 

  • Ison MJ, Mormann F, Cerf M, Koch C, Fried I, Quiroga RQ (2011) Selectivity of pyramidal cells and interneurons in the human medial temporal lobe. J Neurophysiol 106:1713–1721

    Article  Google Scholar 

  • Kawasaki H, Adolphs R, Oya H, Kovach C, Damasio H, Kaufman O, Howard M (2005) Analysis of single-unit responses to emotional scenes in human ventromedial prefrontal cortex. J Cogn Neurosci 17:1509–1518

    Article  Google Scholar 

  • Kim S-G, Ogawa S (2012) Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals. J Cereb Blood Flow Metab 32:1188–1206

    Article  Google Scholar 

  • Konorski J (1967) Integrative activity of the brain; an interdisciplinary approach. Chicago University, Chicago

    Google Scholar 

  • Kreiman G, Fried I, Koch C (2002) Single-neuron correlates of subjective vision in the human medial temporal lobe. Proc Natl Acad Sci USA 99:8378–8383

    Article  Google Scholar 

  • Kreiman G, Hung CP, Kraskov A, Quiroga RQ, Poggio T, DiCarlo JJ (2006) Object selectivity of local field potentials and spikes in the macaque inferior temporal cortex. Neuron 49:433–445

    Article  Google Scholar 

  • Kreiman G, Koch C, Fried I (2000a) Category-specific visual responses of single neurons in the human medial temporal lobe. Nat Neurosci 3:946–953

    Article  Google Scholar 

  • Kreiman G, Koch C, Fried I (2000b) Imagery neurons in the human brain. Nature 408:357–361

    Article  Google Scholar 

  • Leonard CM, Rolls ET, Wilson FAW, Baylis GC (1985) Neurons in the amygdala of the monkey with responses selective for faces. Behav Brain Res 15:159–176

    Article  Google Scholar 

  • Lisman JE, Otmakhova NA (2001) Storage, recall, and novelty detection of sequences by the hippocampus: Elaborating on the SOCRATIC model to account for normal and aberrant effects of dopamine. Hippocampus 11:551–568

    Article  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  Google Scholar 

  • Logothetis NK, Sheinberg DL (1996) Visual object recognition. Annu Rev Neurosci 19:577–621

    Article  Google Scholar 

  • Logothetis NK, Wandell BA (2004) Interpreting the BOLD signal. Annu Rev Physiol 66:735–769

    Article  Google Scholar 

  • Milner B, Corkin S, Teuber H-L (1968) Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of H.M. Neuropsychologia 6:215–234

    Article  Google Scholar 

  • Miyashita Y, Rolls ET, Cahusac PM, Niki H, Feigenbaum JD (1989) Activity of hippocampal formation neurons in the monkey related to a conditional spatial response task. J Neurophysiol 61:669–678

    Google Scholar 

  • Mormann F, Dubois J, Kornblith S, Milosavljevic M, Cerf M, Ison M, Tsuchiya N, Kraskov A, Quiroga RQ, Adolphs R, Fried I, Koch C (2011) A category-specific response to animals in the right human amygdala. Nat Neurosci 14:1247–1249

    Article  Google Scholar 

  • Mormann F, Kornblith S, Quiroga RQ, Kraskov A, Cerf M, Fried I, Koch C (2008) Latency and selectivity of single neurons indicate hierarchical processing in the human medial temporal lobe. J Neurosci 28:8865–8872

    Article  Google Scholar 

  • Mosher CP, Zimmerman PE, Gothard KM (2014) Neurons in the monkey amygdala detect eye contact during naturalistic social interactions. Curr Biol 24:2459–2464

    Article  Google Scholar 

  • Mukamel R, Ekstrom AD, Kaplan J, Iacoboni M, Fried I (2010) Single-neuron responses in humans during execution and observation of actions. Curr Biol 20:750–756

    Article  Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press

    Google Scholar 

  • Olshausen BA, Field DJ (2004) Sparse coding of sensory inputs. Curr Opin Neurobiol 14:481–487

    Google Scholar 

  • Quian Quiroga R (2012) Concept cells: the building blocks of declarative memory functions. Nat Rev Neurosci 13:587–597

    Google Scholar 

  • Quian Quiroga R (2013) Gnostic cells in the 21st century. Acta Neurobiol Exp (Wars) 73:463–471

    Google Scholar 

  • Quian Quiroga R, Kraskov A, Koch C, Fried I (2009) Explicit encoding of multimodal percepts by single neurons in the human brain. Curr Biol 19:1308–1313

    Article  Google Scholar 

  • Quian Quiroga R, Kreiman G, Koch C, Fried I (2008) Sparse but not “grandmother-cell” coding in the medial temporal lobe. Trends Cogn Sci 12:87–91

    Article  Google Scholar 

  • Quian Quiroga R, Reddy L, Koch C, Fried I (2007) Decoding visual inputs from multiple neurons in the human temporal lobe. J Neurophysiol 98:1997–2007

    Article  Google Scholar 

  • Quian Quiroga R, Reddy L, Kreiman G, Koch C, Fried I (2005) Invariant visual representation by single neurons in the human brain. Nature 435:1102–1107

    Article  Google Scholar 

  • Quian Quiroga R, Kraskov A, Mormann F, Fried I, Koch C (2014) Single-cell responses to face adaptation in the human medial temporal lobe. Neuron 84:363–369

    Article  Google Scholar 

  • Rutishauser U, Mamelak AN, Schuman EM (2006) Single-trial learning of novel stimuli by individual neurons of the human hippocampus-amygdala complex. Neuron 49:805–813

    Article  Google Scholar 

  • Rutishauser U, Ross IB, Mamelak AN, Schuman EM (2010) Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature 464:903–907

    Article  Google Scholar 

  • Rutishauser U, Schuman EM, Mamelak A (2014) Single neuron correlates of declarative memory formation and retrieval in the human medial temporal lobe. In: Fried I, Rutishauser U, Cref U, Kreiman G (eds) Single neuron studies of the human brain. MIT Press, Boston

    Google Scholar 

  • Rutishauser U, Schuman EM, Mamelak AN (2008) Activity of human hippocampal and amygdala neurons during retrieval of declarative memories. Proc Natl Acad Sci USA 105:329–334

    Article  Google Scholar 

  • Rutishauser U, Ye S, Koroma M, Tudusciuc O, Ross IB, Chung JM, Mamelak AN (2015) Representation of retrieval confidence by single neurons in the human medial temporal lobe. Nat Neurosci 18:1–12

    Google Scholar 

  • Schumann CM, Hamstra J, Goodlin-Jones BL, Lotspeich LJ, Kwon H, Buonocore MH, Lammers CR, Reiss AL, Amaral DG (2004) The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J Neurosci 24:6392–6401

    Article  Google Scholar 

  • Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11–21

    Article  Google Scholar 

  • Sheinberg DL, Logothetis NK (1997) The role of temporal cortical areas in perceptual organization. Proc Natl Acad Sci USA 94:3408–3413

    Article  Google Scholar 

  • Shou T, Ruan D, Zhou Y (1986) The orientation bias of LGN neurons shows topographic relation to area centralis in the cat retina. Exp Brain Res 64:233–236

    Article  Google Scholar 

  • Simons DJ, Woolsey TA (1979) Functional organization in mouse barrel cortex. Brain Res 165:327–332

    Article  Google Scholar 

  • Squire LR, Stark CEL, Clark RE (2004) The medial temporal lobe. Annu Rev Neurosci 27:279–306

    Article  Google Scholar 

  • Sugase Y, Yamane S, Ueno S, Kawano K (1999) Global and fine information coded by single neurons in the temporal visual cortex. Nature 400:869–873

    Article  Google Scholar 

  • Suzuki WA (1996) Neuroanatomy of the monkey entorhinal, perirhinal and parahippocampal cortices: organization of cortical inputs and interconnections with amygdala and striatum. Semin Neurosci 8:3–12

    Article  Google Scholar 

  • Suzuki WA, Amaral DG (1994) Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol 350:497–533

    Article  Google Scholar 

  • Talavage TM, Ledden PJ, Benson RR, Rosen BR, Melcher JR (2000) Frequency-dependent responses exhibited by multiple regions in human auditory cortex. Hear Res 150:225–244

    Article  Google Scholar 

  • Tanaka K (1996) Inferotemporal cortex and object vision. Annu Rev Neurosci 19:109–139

    Article  Google Scholar 

  • Tranel D, Hyman BT (1990) Neuropsychological correlates of bilateral amygdala damage. Arch Neurol 47:349–355

    Article  Google Scholar 

  • Tsao DY, Schweers N, Moeller S, Freiwald WA (2008) Patches of face-selective cortex in the macaque frontal lobe. Nat Neurosci 11:877–879

    Google Scholar 

  • Viskontas IV, Quiroga RQ, Fried I (2009) Human medial temporal lobe neurons respond preferentially to personally relevant images. Proc Natl Acad Sci USA 106:21329–21334

    Article  Google Scholar 

  • Wang S, Tudusciuc O, Mamelak AN, Ross IB, Adolphs R, Rutishauser U (2014) Neurons in the human amygdala selective for perceived emotion. Proc Natl Acad Sci USA 111:E3110–E3119

    Article  Google Scholar 

  • Waydo S, Kraskov A, Quian Quiroga R, Fried I, Koch C (2006) Sparse representation in the human medial temporal lobe. J Neurosci 26:10232–10234

    Article  Google Scholar 

  • Wolfe JM (1984) Reversing ocular dominance and suppression in a single flash. Vision Res 24:471–478

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan KamiƄski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

KamiƄski, J., Rutishauser, U. (2017). Insights on Vision Derived from Studying Human Single Neurons. In: Zhao, Q. (eds) Computational and Cognitive Neuroscience of Vision. Cognitive Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0213-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0213-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0211-3

  • Online ISBN: 978-981-10-0213-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics