Skip to main content

Neural Mechanisms of Saliency, Attention, and Orienting

  • Chapter
  • First Online:
Computational and Cognitive Neuroscience of Vision

Part of the book series: Cognitive Science and Technology ((CSAT))

Abstract

Active vision involves a continual re-orienting of the line of sight with stimuli pertinent to current goals. In humans and other primates, such orienting behavior relies on a distributed network of cortical and subcortical brain areas. The neural basis of orienting is theorized to be under the control of two general mechanisms: One mechanism transforms complex visual input into a spatial map that highlights the most visually conspicuous locations (saliency map). A second mechanism integrates bottom-up saliency with internal goals for flexible orienting towards behaviorally relevant stimuli (priority map). We review evidence for such mechanisms in the primate brain and raise novel issues and insights that challenge current views about the neural basis of saliency, attention, and orienting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arcizet F, Mirpour K, Bisley JW (2011) A pure salience response in posterior parietal cortex. Cereb Cortex 21:2498–2506

    Article  Google Scholar 

  • Asadollahi A, Mysore SP, Knudsen EI (2010) Stimulus-driven competition in a cholinergic midbrain nucleus. Nat Neurosci 13:889–895

    Article  Google Scholar 

  • Basso MA, Wurtz RH (1998) Modulation of neuronal activity in superior colliculus by changes in target probability. J Neurosci 18:7519–7534

    Google Scholar 

  • Behan M, Appell PP (1992) Intrinsic circuitry in the cat superior colliculus: Projections from the superficial layers. J Comp Neurol 315:230–243

    Article  Google Scholar 

  • Bell AH, Fecteau JH, Munoz DP (2004) Using auditory and visual stimuli to investigate the behavioral and neuronal consequences of reflexive covert orienting. J Neurophysiol 91:2172–2184

    Article  Google Scholar 

  • Bell AH, Meredith MA, Van Opstal AJ, Munoz DP (2006) Stimulus intensity modifies saccadic reaction time and visual response latency in the superior colliculus. Exp Brain Res 174:53–59

    Article  Google Scholar 

  • Berman RA, Wurtz RH (2011) Signals conveyed in the pulvinar pathway from superior colliculus to cortical area MT. J Neurosci 31:373–384

    Article  Google Scholar 

  • Berman RA, Wurtz RH (2010) Functional identification of a pulvinar path from superior colliculus to cortical area MT. J Neurosci 30:6342–6354

    Article  Google Scholar 

  • Bichot NP, Schall JD (1999) Effects of similarity and history on neural mechanisms of visual selection. Nat Neurosci 2:549–554

    Article  Google Scholar 

  • Bichot NP, Chenchal Rao S, Schall JD (2001a) Continuous processing in macaque frontal cortex during visual search. Neuropsychologia 39:972–982

    Article  Google Scholar 

  • Bichot NP, Thompson KG, Chenchal Rao S, Schall JD (2001b) Reliability of macaque frontal eye field neurons signaling saccade targets during visual search. J Neurosci 21:713–725

    Google Scholar 

  • Bisley JW (2011) The neural basis of visual attention. J Physiol 589:49–57

    Article  Google Scholar 

  • Bisley JW, Goldberg ME (2010) Attention, intention, and priority in the parietal lobe. Annu Rev Neurosci 33:1–21

    Article  Google Scholar 

  • Bisley JW, Goldberg ME (2003) Neuronal activity in the lateral intraparietal area and spatial attention. Science 299:81–86

    Article  Google Scholar 

  • Boehnke SE, Munoz DP (2008) On the importance of the transient visual response in the superior colliculus. Curr Opin Neurobiol 18(6):544–551

    Article  Google Scholar 

  • Borji A, Itti L (2013) State-of-the-art in visual attention modeling. IEEE Trans Pattern Anal Mach Intell 35:185–207

    Article  Google Scholar 

  • Bosman CA, Schoffelen JM, Brunet N, Oostenveld R, Bastos AM, Womelsdorf T, Rubehn B, Stieglitz T, De Weerd P, Fries P (2012) Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron 75:875–888

    Article  Google Scholar 

  • Broadbent D (1958) Perception and communication. Pergamon Press, London

    Book  Google Scholar 

  • Bruce CJ, Goldberg ME, Bushnell MC, Stanton GB (1985) Primate frontal eye fields. II. physiological and anatomical correlates of electrically evoked eye movements. J Neurophysiol 54:714–734

    Google Scholar 

  • Burrows BE, Moore T (2009) Influence and limitations of popout in the selection of salient visual stimuli by area V4 neurons. J Neurosci 29:15169–15177

    Article  Google Scholar 

  • Carrasco M (2011) Visual attention: the past 25 years. Vision Res 51:1484–1525

    Article  Google Scholar 

  • Casanova C (2004) The visual functions of the pulvinar. In: Werner JS (ed) The visual neurosciences. MIT Press, Cambridge, MA

    Google Scholar 

  • Cerkevich CM, Lyon DC, Balaram P, Kaas JH (2014) Distribution of cortical neurons projecting to the superior colliculus in macaque monkeys. Eye Brain 2014:121–137

    Article  Google Scholar 

  • Coe B, Tomihara K, Matsuzawa M, Hikosaka O (2002) Visual and anticipatory bias in three cortical eye fields of the monkey during an adaptive decision-making task. J Neurosci 22:5081–5090

    Google Scholar 

  • Cohen JY, Heitz RP, Woodman GF, Schall JD (2009) Neural basis of the set-size effect in frontal eye field: Timing of attention during visual search. J Neurophysiol 101:1699–1704

    Article  Google Scholar 

  • Comoli E, Coizet V, Boyes J, Bolam JP, Canteras NS, Quirk RH, Overton PG, Redgrave P (2003) A direct projection from superior colliculus to substantia nigra for detecting salient visual events. Nat Neurosci 6:974–980

    Article  Google Scholar 

  • Corneil BD, Munoz DP (2014) Overt responses during covert orienting. Neuron 82:1230–1243

    Article  Google Scholar 

  • Corneil BD, Munoz DP, Olivier E (2007) Priming of head premotor circuits during oculomotor preparation. J Neurophysiol 97:701–714

    Article  Google Scholar 

  • Davidson RM, Bender DB (1991) Selectivity for relative motion in the monkey superior colliculus. J Neurophysiol 65:1115–1133

    Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222

    Article  Google Scholar 

  • Dorris MC, Munoz DP (1998) Saccadic probability influences motor preparation signals and time to saccadic initiation. J Neurosci 18:7015–7026

    Google Scholar 

  • Dorris MC, Munoz DP (1995) A neural correlate for the gap effect on saccadic reaction times in monkey. J Neurophysiol 73:2558–2562

    Google Scholar 

  • Dorris MC, Olivier E, Munoz DP (2007) Competitive integration of visual and preparatory signals in the superior colliculus during saccadic programming. J Neurosci 27:5053–5062

    Article  Google Scholar 

  • Dorris MC, Paré M, Munoz DP (1997) Neuronal activity in monkey superior colliculus related to the initiation of saccadic eye movements. J Neurosci 17:8566–8579

    Google Scholar 

  • Dorris MC, Klein RM, Everling S, Munoz DP (2002) Contribution of the primate superior colliculus to inhibition of return. J Cogn Neurosci 14:1256–1263

    Article  Google Scholar 

  • Driver J (2001) A selective review of selective attention research from the past century. Br J Psychol 92:53–78

    Article  Google Scholar 

  • Everling S, Munoz DP (2000) Neuronal correlates for preparatory set associated with pro-saccades and anti-saccades in the primate frontal eye field. J Neurosci 20:387–400

    Google Scholar 

  • Fecteau JH, Munoz DP (2006) Salience, relevance, and firing: A priority map for target selection. Trends Cogn Sci 10:382–390

    Article  Google Scholar 

  • Fecteau JH, Munoz DP (2005) Correlates of capture of attention and inhibition of return across stages of visual processing. J Cogn Neurosci 17:1714–1727

    Article  Google Scholar 

  • Fecteau JH, Bell AH, Munoz DP (2004) Neural correlates of the automatic and goal-driven biases in orienting spatial attention. J Neurophysiol 92:1728–1737

    Article  Google Scholar 

  • Fernandes HL, Stevenson IH, Phillips AN, Segraves MA, Kording KP (2014) Saliency and saccade encoding in the frontal eye field during natural scene search. Cereb Cortex 24:3232–3245

    Article  Google Scholar 

  • Ferraina S, Paré M, Wurtz RH (2002) Comparison of cortico-cortical and cortico-collicular signals for the generation of saccadic eye movements. J Neurophysiol 87:845–858

    Google Scholar 

  • Gandhi NJ, Katnani HA (2011) Motor functions of the superior colliculus. Annu Rev Neurosci 34:205–231

    Article  Google Scholar 

  • Gattass R, Desimone R (1996) Responses of cells in the superior colliculus during performance of a spatial attention task in the macaque. Rev Bras Biol 56(2):257–279

    Google Scholar 

  • Glimcher PW, Sparks DL (1992) Movement selection in advance of action in the superior colliculus. Nature 355:542–545

    Article  Google Scholar 

  • Goddard CA, Sridharan D, Huguenard JR, Knudsen EI (2012) Gamma oscillations are generated locally in an attention-related midbrain network. Neuron 73:567–580

    Article  Google Scholar 

  • Goldberg ME, Wurtz RH (1972) Activity of superior colliculus in behaving monkey. II. effect of attention on neuronal responses. J Neurophysiol 35:560–574

    Google Scholar 

  • Goldberg ME, Bisley J, Powell KD, Gottlieb J, Kusunoki M (2002) The role of the lateral intraparietal area of the monkey in the generation of saccades and visuospatial attention. Ann N Y Acad Sci 956:205–215

    Article  Google Scholar 

  • Goodale MA, Westwood DA (2004) An evolving view of duplex vision: separate but interacting cortical pathways for perception and action. Curr Opin Neurobiol 14(2):203–211

    Article  Google Scholar 

  • Gottlieb JP, Kusunoki M, Goldberg ME (1998) The representation of visual salience in monkey parietal cortex. Nature 391:481–484

    Article  Google Scholar 

  • Graybiel AM (1978) A satellite system of the superior colliculus: the parabigeminal nucleus and its projections to the superficial collicular layers. Brain Res 145:365–374

    Article  Google Scholar 

  • Hall WC, Moschovakis A (2004) The superior colliculus: New approaches for studying sensorimotor integration. CRC Press, Boca Raton

    Google Scholar 

  • Hanes DP, Wurtz RH (2001) Interaction of the frontal eye field and superior colliculus for saccade generation. J Neurophysiol 85:804–815

    Google Scholar 

  • Hanes DP, Schall JD (1996) Neural control of voluntary movement initiation. Science 274:427–430

    Article  Google Scholar 

  • Heitz RP, Schall JD (2012) Neural mechanisms of speed-accuracy tradeoff. Neuron 76:616–628

    Article  Google Scholar 

  • Helms MC, Ozen G, Hall WC (2004) Organization of the intermediate gray layer of the superior colliculus. I. intrinsic vertical connections. J Neurophysiol 91:1706–1715

    Article  Google Scholar 

  • Hikosaka O, Takikawa Y, Kawagoe R (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80:953–978

    Google Scholar 

  • Hikosaka O, Kim HF, Yasuda M, Yamamoto S (2014) Basal ganglia circuits for reward value-guided behavior. Annu Rev Neurosci 37:289–306

    Article  Google Scholar 

  • Horwitz GD, Newsome WT (1999) Separate signals for target selection and movement specification in the superior colliculus. Science 284:1158–1161

    Article  Google Scholar 

  • Husain M, Parton A, Hodgson TL, Mort D, Rees G (2003) Self-control during response conflict by human supplementary eye field. Nat Neurosci 6:117–118

    Article  Google Scholar 

  • Ignashchenkova A, Dicke PW, Haarmeier T, Thier P (2004) Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention. Nat Neurosci 7:56–64

    Article  Google Scholar 

  • Ipata AE, Gee AL, Goldberg ME, Bisley JW (2006) Activity in the lateral intraparietal area predicts the goal and latency of saccades in a free-viewing visual search task. J Neurosci 26:3656–3661

    Article  Google Scholar 

  • Isa T, Saito Y (2001) The direct visuo-motor pathway in mammalian superior colliculus; novel perspective on the interlaminar connection. Neurosci Res 41:107–113

    Article  Google Scholar 

  • Itti L, Koch C (2001) Computational modelling of visual attention. Nat Rev Neurosci 2:194–203

    Article  Google Scholar 

  • Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20:1254–1259

    Article  Google Scholar 

  • Jantz JJ, Watanabe M, Everling S, Munoz DP (2013) Threshold mechanism for saccade initiation in frontal eye field and superior colliculus. J Neurophysiol 109:2767–2780

    Article  Google Scholar 

  • Jayaraman A, Batton RR, Carpenter MB (1977) Nigrotectal projections in the monkey: An autoradiographic study. Brain Res 135:147–152

    Google Scholar 

  • Kane A, Wade A, Ma-Wyatt A (2011) Delays in using chromatic and luminance information to correct rapid reaches. J Vis 11(10):1–18

    Article  Google Scholar 

  • Kastner S, Ungerleider LG (2000) Mechanisms of visual attention in the human cortex. Annu Rev Neurosci 23:315–341

    Article  Google Scholar 

  • Keating EG, Gooley SG, Pratt SE, Kelsey JE (1983) Removing the superior colliculus silences eye movements normally evoked from stimulation of the parietal and occipital eye fields. Brain Res 269:145–148

    Article  Google Scholar 

  • Kim B, Basso MA (2008) Saccade target selection in the superior colliculus: A signal detection theory approach. J Neurosci 28:2991–3007

    Article  Google Scholar 

  • Knudsen EI (2011) Control from below: The role of a midbrain network in spatial attention. Eur J Neurosci 33(11):1961–1972

    Article  MathSciNet  Google Scholar 

  • Koch C, Ullman S (1985) Shifts in selective visual attention: Towards the underlying neural circuitry. Hum Neurobiol 4:219–227

    Google Scholar 

  • Krauzlis RJ, Lovejoy LP, Zenon A (2013) Superior colliculus and visual spatial attention. Annu Rev Neurosci 36:165–182

    Article  Google Scholar 

  • Krauzlis RJ, Bollimunta A, Arcizet F, Wang L (2014) Attention as an effect not a cause. Trends Cogn Sci 18:457–464

    Article  Google Scholar 

  • Kurylo DD, Skavenski AA (1991) Eye movements elicited by electrical stimulation of area PG in the monkey. J Neurophysiol 65:1243–1253

    Google Scholar 

  • Kustov AA, Robinson DL (1996) Shared neural control of attentional shifts and eye movements. Nature 384:74–77

    Article  Google Scholar 

  • Kusunoki M, Gottlieb J, Goldberg ME (2000) The lateral intraparietal area as a salience map: the representation of abrupt onset, stimulus motion, and task relevance. Vis Res 40:1459–1468

    Article  Google Scholar 

  • Leathers ML, Olson CR (2012) In monkeys making value-based decisions, LIP neurons encode cue salience and not action value. Science 338:132–135

    Article  Google Scholar 

  • Leichnetz GR, Spencer RF, Hardy SG, Astruc J (1981) The prefrontal corticotectal projection in the monkey; an anterograde and retrograde horseradish peroxidase study. Neuroscience 6:1023–1041

    Article  Google Scholar 

  • Li W, Piech V, Gilbert CD (2006) Contour saliency in primary visual cortex. Neuron 50:951–962

    Article  Google Scholar 

  • Li X, Basso MA (2008) Preparing to move increases the sensitivity of superior colliculus neurons. J Neurosci 28:4561–4577

    Article  Google Scholar 

  • Li X, Basso MA (2005) Competitive stimulus interactions within single response fields of superior colliculus neurons. J Neurosci 25:11357–11373

    Article  Google Scholar 

  • Li Z (2002) A saliency map in primary visual cortex. Trends Cogn Sci 6:9–16

    Article  Google Scholar 

  • Liversedge S, Gilchrist I, Everling S (2011) The Oxford handbook of eye movements. Oxford University Press, New York

    Book  Google Scholar 

  • Lock TM, Baizer JS, Bender DB (2003) Distribution of corticotectal cells in macaque. Exp Brain Res 151:455–470

    Article  Google Scholar 

  • Lovejoy LP, Krauzlis RJ (2010) Inactivation of primate superior colliculus impairs covert selection of signals for perceptual judgments. Nat Neurosci 13:261–266

    Article  Google Scholar 

  • Lynch JC, McLaren JW (1989) Deficits of visual attention and saccadic eye movements after lesions of parietooccipital cortex in monkeys. J Neurophysiol 61:74–90

    Google Scholar 

  • Lynch JC, Graybiel AM, Lobeck LJ (1985) The differential projection of two cytoarchitectonic subregions of the inferior parietal lobule of macaque upon the deep layers of the superior colliculus. J Comp Neurol 235:241–254

    Article  Google Scholar 

  • Marino RA, Rodgers CK, Levy R, Munoz DP (2008) Spatial relationships of visuomotor transformations in the superior colliculus map. J Neurophysiol 100:2564–2576

    Article  Google Scholar 

  • Marino RA, Trappenberg TP, Dorris M, Munoz DP (2012a) Spatial interactions in the superior colliculus predict saccade behavior in a neural field model. J Cogn Neurosci 24:315–336

    Google Scholar 

  • Marino RA, Levy R, Boehnke S, White BJ, Itti L, Munoz DP (2012b) Linking visual response properties in the superior colliculus to saccade behavior. Eur J Neurosci 35:1738–1752

    Google Scholar 

  • Marrocco RT, Li RH (1977) Monkey superior colliculus: Properties of single cells and their afferent inputs. J Neurophysiol 40:844–860

    Google Scholar 

  • Maunsell JH, Ghose GM, Assad JA, McAdams CJ, Boudreau CE, Noerager BD (1999) Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys. Vis Neurosci 16:1–14

    Article  Google Scholar 

  • Mazer JA, Gallant JL (2003) Goal-related activity in V4 during free viewing visual search. evidence for a ventral stream visual salience map. Neuron 40:1241–1250

    Article  Google Scholar 

  • McAdams CJ, Reid RC (2005) Attention modulates the responses of simple cells in monkey primary visual cortex. J Neurosci 25:11023–11033

    Article  Google Scholar 

  • McAlonan K, Cavanaugh J, Wurtz RH (2008) Guarding the gateway to cortex with attention in visual thalamus. Nature 456:391–394

    Article  Google Scholar 

  • McPeek RM, Keller EL (2004) Deficits in saccade target selection after inactivation of superior colliculus. Nat Neurosci 7:757–763

    Article  Google Scholar 

  • McPeek RM, Keller EL (2002) Saccade target selection in the superior colliculus during a visual search task. J Neurophysiol 88:2019–2034

    Google Scholar 

  • McPeek RM, Han JH, Keller EL (2003) Competition between saccade goals in the superior colliculus produces saccade curvature. J Neurophysiol 89:2577–2590

    Article  Google Scholar 

  • Meredith MA, Ramoa AS (1998) Intrinsic circuitry of the superior colliculus: Pharmacophysiological identification of horizontally oriented inhibitory interneurons. J Neurophysiol 79:1597–1602

    Google Scholar 

  • Mohler CW, Wurtz RH (1976) Organization of monkey superior colliculus: Intermediate layer cells discharging before eye movements. J Neurophysiol 39:722–744

    Google Scholar 

  • Moran J, Desimone R (1985) Selective attention gates visual processing in the extrastriate cortex. Science 229:782–784

    Article  Google Scholar 

  • Moschovakis AK (1996) The superior colliculus and eye movement control. Curr Opin Neurobiol 6:811–816

    Article  Google Scholar 

  • Motter BC (1993) Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. J Neurophysiol 70:909–919

    Google Scholar 

  • Muller JR, Philiastides MG, Newsome WT (2005) Microstimulation of the superior colliculus focuses attention without moving the eyes. Proc Natl Acad Sci 102:524–529

    Article  Google Scholar 

  • Munoz DP, Everling S (2004) Look away: The anti-saccade task and the voluntary control of eye movement. Nat Rev Neurosci 5:218–228

    Article  Google Scholar 

  • Munoz DP, Istvan PJ (1998) Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus. J Neurophysiol 79:1193–1209

    Google Scholar 

  • Munoz DP, Wurtz RH (1995) Saccade-related activity in monkey superior colliculus. I. characteristics of burst and buildup cells. J Neurophysiol 73:2313–2333

    Google Scholar 

  • Munoz DP, Dorris MC, Paré M, Everling S (2000) On your mark, get set: Brainstem circuitry underlying saccadic initiation. Can J Physiol Pharmacol 78:934–944

    Article  Google Scholar 

  • Mysore SP, Knudsen EI (2011) The role of a midbrain network in competitive stimulus selection. Curr Opin Neurobiol 21:653–660

    Article  Google Scholar 

  • Mysore SP, Asadollahi A, Knudsen EI (2011) Signaling of the strongest stimulus in the owl optic tectum. J Neurosci 31:5186–5196

    Article  Google Scholar 

  • Noudoost B, Moore T (2011) Control of visual cortical signals by prefrontal dopamine. Nature 474:372–375

    Article  Google Scholar 

  • Ogawa T, Komatsu H (2004) Target selection in area V4 during a multidimensional visual search task. J Neurosci 24:6371–6382

    Article  Google Scholar 

  • Ottes FP, Van Gisbergen JA, Eggermont JJ (1986) Visuomotor fields of the superior colliculus: A quantitative model. Vis Res 26:857–873

    Article  Google Scholar 

  • Paré M, Wurtz RH (1997) Monkey posterior parietal cortex neurons antidromically activated from superior colliculus. J Neurophysiol 78:3493–3497

    Google Scholar 

  • Paré M, Dorris MC (2011) The role of posterior parietal cortex in the regulation of saccadic eye movements. In: Liversedge S, Gilchrist I, Everling S (eds) Oxford handbook of eye movements. Oxford University Press, Oxford, pp 257–278

    Google Scholar 

  • Phongphanphanee P, Marino RA, Kaneda K, Yanagawa Y, Munoz DP, Isa T (2014) Distinct local circuit properties of the superficial and intermediate layers of the rodent superior colliculus. Eur J Neurosci 40:2329–2343

    Article  Google Scholar 

  • Posner MI, Snyder CR, Davidson BJ (1980) Attention and the detection of signals. J Exp Psychol 109:160–174

    Article  Google Scholar 

  • Purcell BA, Weigand PK, Schall JD (2012a) Supplementary eye field during visual search: Salience, cognitive control, and performance monitoring. J Neurosci 32:10273–10285

    Article  Google Scholar 

  • Purcell BA, Schall JD, Logan GD, Palmeri TJ (2012b) From salience to saccades: multiple-alternative gated stochastic accumulator model of visual search. J Neurosci 32:3433–3446

    Article  Google Scholar 

  • Purcell BA, Heitz RP, Cohen JY, Schall JD, Logan GD, Palmeri TJ (2010) Neurally constrained modeling of perceptual decision making. Psychol Rev 117:1113–1143

    Article  Google Scholar 

  • Redgrave P, Gurney K (2006) The short-latency dopamine signal: A role in discovering novel actions? Nat Rev Neurosci 7:967–975

    Article  Google Scholar 

  • Redgrave P, Coizet V, Comoli E, McHaffie JG, Leriche M, Vautrelle N, Hayes LM, Overton P (2010) Interactions between the midbrain superior colliculus and the basal ganglia. Front Neuroanat 4:132

    Article  Google Scholar 

  • Reynolds JH, Chelazzi L (2004) Attentional modulation of visual processing. Annu Rev Neurosci 27:611–647

    Article  Google Scholar 

  • Reynolds JH, Pasternak T, Desimone R (2000) Attention increases sensitivity of V4 neurons. Neuron 26:703–714

    Article  Google Scholar 

  • Robinson DA (1972) Eye movements evoked by collicular stimulation in the alert monkey. Vis Res 12:1795–1808

    Article  Google Scholar 

  • Rodgers CK, Munoz DP, Scott SH, Paré M (2006) Discharge properties of monkey tectoreticular neurons. J Neurophysiol 95:3502–3511

    Article  Google Scholar 

  • Saito Y, Isa T (2005) Organization of interlaminar interactions in the rat superior colliculus. J Neurophysiol 93:2898–2907

    Article  Google Scholar 

  • Sato T, Murthy A, Thompson KG, Schall JD (2001) Search efficiency but not response interference affects visual selection in frontal eye field. Neuron 30:583–591

    Article  Google Scholar 

  • Schall JD, Cohen JY (2011) The neural basis of saccade target selection. In: Liversedge S, Gilchrist I, Everling S (eds) Oxford handbook of eye movements. Oxford University Press, Oxford, pp 357–381

    Google Scholar 

  • Schall JD, Thompson KG (1999) Neural selection and control of visually guided eye movements. Annu Rev Neurosci 22:241–259

    Article  Google Scholar 

  • Schall JD, Hanes DP (1993) Neural basis of saccade target selection in frontal eye field during visual search. Nature 366:467–469

    Article  Google Scholar 

  • Schall JD, Morel A, King DJ, Bullier J (1995) Topography of visual cortex connections with frontal eye field in macaque: Convergence and segregation of processing streams. J Neurosci 15:4464–4487

    Google Scholar 

  • Schall JD, Purcell BA, Heitz RP, Logan GD, Palmeri TJ (2011) Neural mechanisms of saccade target selection: Gated accumulator model of the visual-motor cascade. Eur J Neurosci 33:1991–2002

    Article  Google Scholar 

  • Schiller PH, Sandell JH (1983) Interactions between visually and electrically elicited saccades before and after superior colliculus and frontal eye field ablations in the rhesus monkey. Exp Brain Res 49:381–392

    Article  Google Scholar 

  • Schiller PH, True SD, Conway JL (1980) Deficits in eye movements following frontal eye-field and superior colliculus ablations. J Neurophysiol 44:1175–1189

    Google Scholar 

  • Schlag J, Schlag-Rey M (1987) Evidence for a supplementary eye field. J Neurophysiol 57:179–200

    Google Scholar 

  • Schmolesky MT, Wang Y, Hanes DP, Thompson KG, Leutgeb S, Schall JD, Leventhal AG (1998) Signal timing across the macaque visual system. J Neurophysiol 79:3272–3278

    Google Scholar 

  • Scudder CA, Kaneko CS, Fuchs AF (2002) The brainstem burst generator for saccadic eye movements: A modern synthesis. Exp Brain Res 142:439–462

    Article  Google Scholar 

  • Segraves MA (1992) Activity of monkey frontal eye field neurons projecting to oculomotor regions of the pons. J Neurophysiol 68:1967–1985

    Google Scholar 

  • Segraves MA, Goldberg ME (1987) Functional properties of corticotectal neurons in the monkey’s frontal eye field. J Neurophysiol 58:1387–1419

    Google Scholar 

  • Serences JT, Yantis S (2006) Selective visual attention and perceptual coherence. Trends Cogn Sci 10:38–45

    Article  Google Scholar 

  • Shen K, Paré M (2007) Neuronal activity in superior colliculus signals both stimulus identity and saccade goals during visual conjunction search. J Vis 7(15):1–13

    Google Scholar 

  • Shen K, Valero J, Day GS, Paré M (2011) Investigating the role of the superior colliculus in active vision with the visual search paradigm. Eur J Neurosci 33:2003–2016

    Article  Google Scholar 

  • Shires J, Joshi S, Basso MA (2010) Shedding new light on the role of the basal ganglia-superior colliculus pathway in eye movements. Curr Opin Neurobiol 20:717–725

    Article  Google Scholar 

  • Shook BL, Schlag-Rey M, Schlag J (1990) Primate supplementary eye field: I. comparative aspects of mesencephalic and pontine connections. J Comp Neurol 301:618–642

    Article  Google Scholar 

  • Solomon SG, Lennie P (2007) The machinery of colour vision. Nat Rev Neurosci 8:276–286

    Article  Google Scholar 

  • Sparks DL (2002) The brainstem control of saccadic eye movements. Nat Rev Neurosci 3:952–964

    Article  Google Scholar 

  • Sparks DL, Mays LE (1980) Movement fields of saccade-related burst neurons in the monkey superior colliculus. Brain Res 190:39–50

    Article  Google Scholar 

  • Squire RF, Noudoost B, Schafer RJ, Moore T (2013) Prefrontal contributions to visual selective attention. Annu Rev Neurosci 36:451–466

    Article  Google Scholar 

  • Stanton GB, Goldberg ME, Bruce CJ (1988) Frontal eye field efferents in the macaque monkey: II. topography of terminal fields in midbrain and pons. J Comp Neurol 271:493–506

    Article  Google Scholar 

  • Stepniewska I, Ql HX, Kaas JH (2000) Projections of the superior colliculus to subdivisions of the inferior pulvinar in new world and old world monkeys. Vis Neurosci 17:529–549

    Article  Google Scholar 

  • Stuphorn V, Schall JD (2006) Executive control of countermanding saccades by the supplementary eye field. Nat Neurosci 9:925–931

    Article  Google Scholar 

  • Stuphorn V, Taylor TL, Schall JD (2000) Performance monitoring by the supplementary eye field. Nature 408:857–860

    Article  Google Scholar 

  • Thevarajah D, Mikulic A, Dorris MC (2009) Role of the superior colliculus in choosing mixed-strategy saccades. J Neurosci 29:1998–2008

    Article  Google Scholar 

  • Thomas NW, Paré M (2007) Temporal processing of saccade targets in parietal cortex area LIP during visual search. J Neurophysiol 97:942–947

    Article  Google Scholar 

  • Thompson KG, Bichot NP (2005) A visual salience map in the primate frontal eye field. Prog Brain Res 147:251–262

    Google Scholar 

  • Thompson KG, Bichot NP, Schall JD (1997) Dissociation of visual discrimination from saccade programming in macaque frontal eye field. J Neurophysiol 77:1046–1050

    Google Scholar 

  • Thompson KG, Hanes DP, Bichot NP, Schall JD (1996) Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J Neurophysiol 76:4040–4055

    Google Scholar 

  • Tigges J, Tigges M (1981) Distribution of retinofugal and corticofugal axon terminals in the superior colliculus of squirrel monkey. Invest Ophthalmol Vis Sci 20:149–158

    Google Scholar 

  • Treisman AM (1969) Strategies and models of selective attention. Psychol Rev 76:282–299

    Article  Google Scholar 

  • Treue S (2003) Visual attention: The where, what, how and why of saliency. Curr Opin Neurobiol 13:428–432

    Article  Google Scholar 

  • Treue S, Maunsell JH (1996) Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382:539–541

    Article  Google Scholar 

  • Ungerleider JT, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Mansfield RJW, Goodale MS (eds) The analysis of visual behaviour. MIT Press, Cambridge, MA, pp 549–586

    Google Scholar 

  • Van Gompel RPG, Fischer MH, Murray WS, Hill RL (2007) Eye movements: A window on mind and brain

    Google Scholar 

  • Wang CA, Boehnke SE, White BJ, Munoz DP (2012) Microstimulation of the monkey superior colliculus induces pupil dilation without evoking saccades. J Neurosci 32:3629–3636

    Article  Google Scholar 

  • Wang CA, Munoz DP (2015) A circuit for pupil orienting responses: Implications for cognitive modulation of pupil size. Curr Opin Neurobiol 33:134–140

    Article  Google Scholar 

  • Wang Y, Luksch H, Brecha NC, Karten HJ (2006) Columnar projections from the cholinergic nucleus isthmi to the optic tectum in chicks (gallus gallus): A possible substrate for synchronizing tectal channels. J Comp Neurol 494:7–35

    Article  Google Scholar 

  • Wardak C, Ibos G, Duhamel JR, Olivier E (2006) Contribution of the monkey frontal eye field to covert visual attention. J Neurosci 26:4228–4235

    Article  Google Scholar 

  • Watanabe M, Munoz DP (2011) Probing basal ganglia functions by saccade eye movements. Eur J Neurosci 33:2070–2090

    Article  Google Scholar 

  • Werner JS, Chalupa LM (2014) The new visual neurosciences. MIT Press, MA

    Google Scholar 

  • White BJ, Munoz DP (2011a) The superior colliculus. In: Liversedge S, Gilchrist I, Everling S (eds) Oxford handbook of eye movements. Oxford University Press, Oxford, pp 195–213

    Google Scholar 

  • White BJ, Munoz DP (2011b) Separate visual signals for saccade initiation during target selection in the primate superior colliculus. J Neurosci 31:1570–1578

    Article  Google Scholar 

  • White BJ, Theeuwes J, Munoz DP (2012) Interaction between visual- and goal-related neuronal signals on the trajectories of saccadic eye movements. J Cogn Neurosci 24:707–717

    Article  Google Scholar 

  • White BJ, Kerzel D, Gegenfurtner KR (2006) Visually guided movements to color targets. Exp Brain Res 175:110–126

    Article  Google Scholar 

  • White BJ, Berg D, Itti L, Munoz DP (2014) Visual coding in the superior colliculus during free-viewing of natural dynamic stimuli. Soc Neurosci Abstr 288:11

    Google Scholar 

  • White BJ, Boehnke SE, Marino RA, Itti L, Munoz DP (2009) Color-related signals in the primate superior colliculus. J Neurosci 29:12159–12166

    Article  Google Scholar 

  • White BJ, Marino RA, Boehnke SE, Itti L, Theeuwes J, Munoz DP (2013) Competitive integration of visual and goal-related signals on neuronal accumulation rate: A correlate of oculomotor capture in the superior colliculus. J Cogn Neurosci 25:1754–1768

    Article  Google Scholar 

  • Womelsdorf T, Fries P (2007) The role of neuronal synchronization in selective attention. Curr Opin Neurobiol 17:154–160

    Article  Google Scholar 

  • Wurtz RH, Mohler CW (1976) Organization of monkey superior colliculus: Enhanced visual response of superficial layer cells. J Neurophysiol 39:745–765

    Google Scholar 

  • Wurtz RH, Goldberg ME (1972) Activity of superior colliculus in behaving monkey. 3. cells discharging before eye movements. J Neurophysiol 35:575–586

    Google Scholar 

  • Zenon A, Krauzlis R (2014) Superior colliculus as a subcortical center for visual selection. Med Sci 30:637–643

    Google Scholar 

  • Zenon A, Krauzlis RJ (2012) Attention deficits without cortical neuronal deficits. Nature 489:434–437

    Article  Google Scholar 

  • Zhang X, Zhaoping L, Zhou T, Fang F (2012) Neural activities in v1 create a bottom-up saliency map. Neuron 73:183–192

    Article  Google Scholar 

  • Zhaoping L (2008) Attention capture by eye of origin singletons even without awareness–a hallmark of a bottom-up saliency map in the primary visual cortex. J Vis 8:1.1–18

    Google Scholar 

  • Zhou H, Desimone R (2011) Feature-based attention in the frontal eye field and area V4 during visual search. Neuron 70:1205–1217

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. White .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

White, B.J., Munoz, D.P. (2017). Neural Mechanisms of Saliency, Attention, and Orienting. In: Zhao, Q. (eds) Computational and Cognitive Neuroscience of Vision. Cognitive Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0213-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0213-7_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0211-3

  • Online ISBN: 978-981-10-0213-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics