Skip to main content

The Control of CPG Gait Movement Under the Condition of Attention Selection

  • Conference paper
  • First Online:
Advances in Cognitive Neurodynamics (V)

Part of the book series: Advances in Cognitive Neurodynamics ((ICCN))

  • 1179 Accesses

Abstract

The human rhythmic gait movement can be generated by a central pattern generator (CPG) by self-oscillation, wherein the frequency and the mode of gait movement are controlled by CPG output. As an important property of the human visual perception, attention selection makes great significance in precise control of movements. The CPG model under the condition of attention selection presented in this study is a result of amendments to CPG model based on Matsuoka neural oscillators, which can fully reflect the role that attention selection plays in the control of gait movement. Simulation results show that under the action of attention selection, the amended CPG model evolves with different frequencies and different modes for a certain time, thus reflecting not only the influence of attention selection signal on the mode of CPG model’s output, but also the continued control of attention selection on the CPG model’s gait output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forssberg, H., Grillner, S.: The locomotion of the acute spinal cat injected with elonidine i. v. [J]. Brain Res. 50(1), 184–186 (1973)

    Article  PubMed  CAS  Google Scholar 

  2. Brown, G.: The intrinsic factors in the act of progression in the mammal. Proc. Royal Soc. B Biol. Sci. 84, 308–319 (1911)

    Article  Google Scholar 

  3. Kiehn, O., Butt, S.J.: Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord. Prog. Neurobiol. 70, 347–361 (2003)

    Article  PubMed  CAS  Google Scholar 

  4. Choi, J.T., Bastian, A.J.: Adaptation reveals independent control networks for human walking. Nat. Neurosci. 10, 1055–1062 (2007)

    Google Scholar 

  5. Qiang, L., Juan, T.: Synchronization and stochastic resonance of the small-world neural network based on the CPG. Cogn. Neurodyn. 8(3), 217–226 (2014)

    Article  Google Scholar 

  6. Zehr, E.P., Fujita, K., Stein, R.B.: Regulation of arm and leg movement during human locomotion. Neurosci. 10(4), 347–361 (2004)

    Google Scholar 

  7. Taga, G.: A model of the neuro-musculo-skeletal system for human locomotion. Biol. Cybern. 73, 97–121 (1995)

    Article  PubMed  CAS  Google Scholar 

  8. Ogihara, N., Yamazaki, N.: Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model. Biol. Cybern. 84, 1–11 (2001)

    Article  PubMed  CAS  Google Scholar 

  9. Zhang, D., Zhu, K.: Modeling biological motor control for human locomotion with function electrical stimulation. Biol. Cybern. 96, 79–97 (2007)

    Article  PubMed  Google Scholar 

  10. Zhang, D., Zhu, K.: Computer simulation study on central pattern generator: from biology to engineering. Int. J. Neural Syst. 16(6), 405–422 (2006)

    Article  PubMed  Google Scholar 

  11. Zhang, D.G., Zhu, K.Y., Zheng, H.: Model the leg cycling movements with neural oscillator. In: Proceedings of the IEEE international conference on systems, man and cybernetics, Hague, vol. 1, pp. 740–744 (2004)

    Google Scholar 

  12. Ermentrout, G.B., Chow, C.C.: Modeling neural oscillations. Physiol. Behav. 77(4), 629–633 (2002)

    Article  PubMed  CAS  Google Scholar 

  13. Pandy, M.G.: Computer modeling and simulation of human movement. Ann. Rev. Biomed. Eng. 3, 245–273 (2001)

    Article  CAS  Google Scholar 

  14. Winter, D.A.: Biomechanics and Motor Control of Human Movement, 3rd edn. Wiley, Singapore (2005)

    Google Scholar 

  15. Matsuoka, K.: Sustained oscillations generated by mutually inhibiting neurons with adaption. Biol. Cybern. 52, 367–376 (1985)

    Article  PubMed  CAS  Google Scholar 

  16. Matsuoka, K.: Mechanisms of frequency and pattern control in the neural rhythm generators. Biol. Cybern. 56, 345–353 (1987)

    Article  PubMed  CAS  Google Scholar 

  17. Dong, W., Wang, R., Zhang, Z.: Simulation study of CPG model: exploring of a certain characteristics of rhythm of gait movement on the intelligent creature. In: The Sixth International Symposium on Neural Networks (ISNN 2009), May 2009

    Google Scholar 

  18. Dong, W., Wang, R., Zhang, Z.: Discussion on rhythmic gait movement affected by cerebral cortex signal. In: The 2nd International Conference on Cognitive Neurodynamics (ICCN2009)

    Google Scholar 

  19. Hu, J.J., Williamson, M.M., Pratt, G.A.: Bipedal locomotion control with rhythmic neural oscillators. In: IEEE/ RSJ International Conference on Intelligent Robots and Systems, pp. 1475–1481 (1999)

    Google Scholar 

  20. Niebur, E., Koch, C.: A model for the neuronal implementation of selective visual attention based on temporal correlation among neurons. J. Comput. Neurosci. 1(2), 141–158 (1994)

    Article  PubMed  CAS  Google Scholar 

  21. Morris, J.S., Friston, K.J., Dolan, R.J.: Neural responses to salient visual stimuli. Proc. R. Soc. Lond. B 264(1382), 769–775 (1997)

    Article  CAS  Google Scholar 

  22. Jeong, S., Arie, H., Lee, M., Tani, J.: Neuro-robotics study on integrative learning of proactive visual attention and motor behaviors. Cogn. Neurodyn. 6(1), 43–59 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chik, D., Borisyuk, R., Kazanovich, Y.: Selective attention model with spiking elements. Neural Netw 22, 890–900 (2009)

    Article  PubMed  Google Scholar 

  24. Qu, J.,Wang, R.,Du, Y.: An improved selective attention model considering orientation preferences. Neural Comput. Appl. 22(2), 303–311 (2013)

    Google Scholar 

  25. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its applications to conduction and excitation in nerve. J. Physiol. 1952(117), 500–544 (1952)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11232005, 11472104) and the Ministry of Education Doctoral Foundation (Grant No. 20120074110020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Wang, W., Wang, R. (2016). The Control of CPG Gait Movement Under the Condition of Attention Selection. In: Wang, R., Pan, X. (eds) Advances in Cognitive Neurodynamics (V). Advances in Cognitive Neurodynamics. Springer, Singapore. https://doi.org/10.1007/978-981-10-0207-6_88

Download citation

Publish with us

Policies and ethics