Skip to main content

The Energy and Value-Added Products from Pyrolysis of Waste Plastics

  • Chapter
  • First Online:
Recycling of Solid Waste for Biofuels and Bio-chemicals

Abstract

Plastic usage in daily life has increased from 5 to 100 million tons per year since the 1950s due to their light-weight, non-corrosive nature, durability and cheap price. Plastic products consist mainly of polyethylene (PE), polystyrene (PS), polypropylene (PP) and polyvinyl chloride (PVC) type plastics. The disposal of plastic waste causes environmental and operational burden to landfills. Conventional mechanical recycling methods such as sorting, grinding, washing and extrusion can recycle only 15–20 % of all plastic waste. The use of open or uncontrolled incineration or combustion of plastic waste has resulted in air and waterborne pollutants. Recently, pyrolysis technology with catalytic reforming is being used to convert plastic waste into liquid oil and char as energy and value-added products. Pyrolysis is one of the tertiary recycling techniques in which plastic polymers are broken down into smaller organic molecules (monomers) in the absence of oxygen at elevated temperatures (>400 °C). Use of catalysts such as aluminum oxides, natural and synthetic zeolites, fly ash, calcium hydroxide, and red mud can improve the yield and quality of liquid oil. The pyrolysis yield depends on a number of parameters such as temperature, heating rate, moisture contents, retention time, type of plastic and particle size. A yield of up to 80 % of liquid oil by weight can be achieved from plastic waste. The produced liquid oil has similar characteristics to conventional diesel; density (0.8 kg/m3), viscosity (up to 2.96 mm2/s), cloud point (−18 °C), flash point (30.5 °C) and energy content (41.58 MJ/kg). Char produced from pyrolysis can be activated at standard conditions to be used in wastewater treatment, heavy metals removal, and smoke and odor removal. The produced gases from pyrolysis are hydrogen (H2), carbon monoxide (CO) and carbon dioxide (CO2) and can be used as energy carriers. This chapter reviews the challenges and, perspectives of pyrolysis technology for production of energy and value-added products from waste plastics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas-Abadi MS, Haghighi MN, Yeganeh H, Macdonald AG (2014) Evaluation of pyrolysis parameters on polypropylene degradation products. J Anal Appl Pyrol 109:272–277

    Article  CAS  Google Scholar 

  • Achilias DS, Roupakias C, Megalokonomos P, Lappas AA, Antonakou EV (2007) Chemical recycling of plastic waste made from polyethylene (LDPE and HDPE) and polypropylene (PP). J Hazard Mater 149:536–542

    Article  CAS  Google Scholar 

  • Aguado J, Serrano DP, Escola JM, Garagorri E (2002) Catalytic conversion of low density polyethylene using a continuous screw kiln reactor. Catal Today 75:257–262

    Article  CAS  Google Scholar 

  • Aguado J, Serrano DP, Escola JM (2008) Fuels from waste plastics by thermal and catalytic processes: a review. Ind Eng Chem Res 47:7982–7992

    Article  CAS  Google Scholar 

  • Ahmad L (2015) “Plastic Recycling” [online]. Available at http://www.lotfi.net/recycle/plastic.html 14 June 2015

  • Al-Salem SM, Lettieri P, Baeyens J (2010) The valorization of plastic solid waste (PSW) by primary to quaternary routes: from re-use to energy and chemicals. Prog Energy Combust Sci 36:103–129

    Article  CAS  Google Scholar 

  • Antoniou N, Zabaniotou A (2013) Features of an efficient and environmentally attractive used tyres pyrolysis with energy and material recovery. Renew Sustain Energy Rev 20:539–558

    Article  CAS  Google Scholar 

  • Arena U, Mastellone ML (2006) Fluidized bed pyrolysis of plastic wastes. In: Scheirs J, Kaminsky W (eds) Feed stock recycling and pyrolysis of waste plastics: converting waste plastics into diesel and other fuels. Wiley, West Sussex, pp 435–447

    Chapter  Google Scholar 

  • Ashworth DC, Elliott P, Toledano MB (2014) Waste incineration and adverse birth and neonatal outcomes: a systematic review. Environ Int 69:120–132

    Article  Google Scholar 

  • Baghurst DR, Mingos DMP (1992) Superheating effects associated with microwave dielectric heating. J Chem Soc Chem Commun 674–677

    Google Scholar 

  • Beneroso D, Bermúdez JM, Arenillas A, Menéndez JA (2015) Comparing the composition of the synthesis-gas obtained from the pyrolysis of different organic residues for a potential use in the synthesis of bioplastics. J Anal Appl Pyrol 111:55–63

    Article  CAS  Google Scholar 

  • Buekens AG, Huang H (1998) Catalytic plastics cracking for recovery of gasoline-range hydrocarbons from municipal plastic wastes. Resour Conserv Recycl 23:163–181

    Article  Google Scholar 

  • Chen C, Jin Y, Chi Y (2014a) Effects of moisture content and CaO on municipal solid waste pyrolysis in a fixed bed reactor. J Anal Appl Pyrol 110:108–112

    Article  CAS  Google Scholar 

  • Chen D, Yin L, Wang H, He P (2014b) Pyrolysis technologies for municipal solid waste: a review. Waste Manag 34:2466–2486

    Article  CAS  Google Scholar 

  • Ciobanu G, Ignat D, Carja G, Ratoi S, Luca C (2008) Zinc—modified forms of zeolites by wet impregnation method. Chem Bull “POLITEHNICA” Univ (Timişoara) 53(67): 1–2

    Google Scholar 

  • Dai X, Yin X, Wu C, Zhang W, Chen Y (2001a) Pyrolysis of solid biomass in a circulating fluidized bed reactor. Acta Energiae Solaris Sinca 22:124–130

    CAS  Google Scholar 

  • Dai X, Yin X, Wu C, Zhang W, Chen Y (2001b) Pyrolysis of waste tires in a circulating fluidized-bed reactor. Energy 26:385–399

    Article  CAS  Google Scholar 

  • Decree R (2010) Royal Decree establishing King Abdullah city for atomic and renewable, No. A 35. Available from http://www.energy.gov.sa/_pdf/KACARE%20Royal%20Decree%20english.pdf. 17 April 2010

  • Demirbas A (2004) Pyrolysis of municipal plastic wastes for recovery of gasoline range hydrocarbons. J Anal Appl Pyrol 72:97–102

    Article  CAS  Google Scholar 

  • Demirbas A (2010) Fuels from biomass, biorefineries. Springer, London, pp 33–73

    Google Scholar 

  • Demirbas A, Rehan M, Al-Sasi BO, Nizami AS (2016a) Evaluation of natural gas hydrates as a future methane source. Pet Sci Technol doi:10.1080/10916466.2016.1185442

    Google Scholar 

  • Demirbas A, Bafail A, Nizami AS (2016b) Heavy oil upgrading: Unlocking the future fuel supply. Petroleum Science and Technology 34(4):303–308

    Google Scholar 

  • Eqani SAMAS, Khalid R, Bostan N, Saqib Z, Mohmand J, Rehan M, Ali N, Katsoyiannis IA, Shen H (2016) Human lead (Pb) exposure via dust from different land use settings of Pakistan: A case study from two urban mountainous cities. Chemosphere 155:259–265. http://dx.doi.org/10.1016/j.chemosphere.2016.04.036

    Google Scholar 

  • Evans A, Strezov V, Evans T (2009) Assessment of sustainability indicators for renewable energy technologies. Renew Sustain Energy Rev 13:1082–1088

    Article  Google Scholar 

  • FAO: Food and Agriculture Organization (2010) Energy supply and demand: trends and prospects. Report available online: ftp://ftp.fao.org/docrep/fao/010/i0139e/i0139e03.pdf

    Google Scholar 

  • Fonts I, Azuara M, Gea G, Murillo MB (2009) Study of the pyrolysis liquids obtained from different sewage sludge. J Anal Appl Pyrol 85(1–2):184–191

    Article  CAS  Google Scholar 

  • Gao F (2010) Pyrolysis of waste plastics into fuels. PhD Thesis. University of Canterbury Available from http://ir.canterbury.ac.nz/bitstream/10092/4303/1/Thesis_fulltext.pdf

  • Gardy J, Hassanpour A, Lai X, Rehan M (2014) The influence of blending process on the quality of rapeseed oil-used cooking oil biodiesels. Inter Sci J (J Environ Sci) 3:233–240

    Google Scholar 

  • George AS (1994) Plasma arc heating—an overview. Ind Heating 61:57–60

    Google Scholar 

  • Hamid SH, Amin MB, Maadhah AG (2000) Handbook of polymer degradation, 2nd edn. Marcel and Decker, New York, p 335

    Google Scholar 

  • Heras F, Jimenez-Cordero D, Gilarranz MA, Alonso-Morales N, Rodriguez JJ (2014) Activation of waste tire char by cyclic liquid-phase oxidation. Fuel Process Technol 127:157–162

    Article  CAS  Google Scholar 

  • Hernández MR, Gómez A, García AN, Agulló J, Marcilla A (2007) Effect of the temperature in the nature and extension of the primary and secondary reactions in the thermal and HZSM-5 catalytic pyrolysis of HDPE. Appl Catal A 317:183–194

    Article  Google Scholar 

  • Huang H, Tang L (2007) Treatment of organic waste using thermal plasma pyrolysis technology. Energy Convers Manag 48:1331–1337

    Article  CAS  Google Scholar 

  • IEA: International Energy Agency (2014) World energy outlook 2014 Factsheet, how will global energy markets evolve to 2040? Available from http://www.worldenergyoutlook.org/media/weowebsite/2014/141112_WEO_FactSheets.pdf

  • Isioma N, Muhammad Y, Sylvester O’D, Innocent D, Linus O (2013) Cold flow properties and kinematic viscosity of biodiesel. Univers J Chem 1(4): 135–141

    Google Scholar 

  • Jamradloedluk J, Lertsatitthanakorn C (2014) Characterization and utilization of char derived from fast pyrolysis of plastic wastes. Procedia Eng 69:1437–1442

    Article  CAS  Google Scholar 

  • Ji L, Hervier A, Sablier M (2006) Study on the pyrolysis of polyethylene in the presence of iron and copper chlorides. Chemosphere 65:1120–1130

    Article  CAS  Google Scholar 

  • Jung SH, Cho MH, Kang BS, Kim JS (2010) Pyrolysis of a fraction of waste polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Process Technol 91:277–284

    Article  CAS  Google Scholar 

  • KACARE: King Abdullah City of Atomic and Renewable Energy (2012) Renewable energy-waste to energy. A pillar of the sustainable energy kingdom. In: Presentation in first international environment conference. King Fahd Civic Centre, Yanbu Al Sinaiyah, KSA 20–21 Nov 2012. http://www.energy.gov.sa/_pdf/KACARE%20Royal%20Decree%20english.pdf

  • Kaminsky W (2006) Feedstock Recycling and Pyrolysis of Waste Plastics, Wiley, Hoboken, New Jersey, pp 435–447

    Google Scholar 

  • Khan MS, Kaneesamkandi Z (2013) Biodegradable waste to biogas: renewable energy option for the Kingdom of Saudi Arabia. Int J Innov Appl Stud 4(1):101–113

    Google Scholar 

  • Kim SS, Agblevor FA, Lim J (2009) Fast pyrolysis of chicken litter and turkey litter in a fluidized bed reactor. J Ind Eng Chem 15:247–252

    Google Scholar 

  • Kim JS, Cho MH, Jung SH (2010) Pyrolysis of mixed plastic wastes for the recovery of benzene, toluene and xylene (BTX) aromatics in a fluidized bed and chlorine removal by applying various additives. Energy Fuels 24:1389–1395

    Article  Google Scholar 

  • Kumar PA, Mishra DK, Mishra BG, Singh RK (2010) Effect of sulphuric acid treatment on the physicochemical characteristics of kaolin clay. Colloids Surf A: Physicochem Eng Asp 1–3(20):98–104363

    Google Scholar 

  • Kumar S, Singh RK (2011) Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis. Braz J Chem Eng 28(4):659–667

    CAS  Google Scholar 

  • Lai L, Kumar S, Chintala R, Owens VN, Schumacher J, Nizami AS, Lee SS, Rafique R (2016) Modeling the impacts of temperature and precipitation changes on soil CO2 fluxes from a Switchgrass stand recently converted from cropland. J Environ Sci 43:15–25

    Google Scholar 

  • Lee KH (2009) Thermal and catalytic degradation of pyrolytic oil from pyrolysis of municipal plastic wastes. J Anal Appl Pyrol 85:372–379

    Article  CAS  Google Scholar 

  • Lee KH (2012) Effect of zeolite type on catalytic upgrading of pyrolysis wax oil. J Anal Appl Pyrol 94:209–214

    Article  CAS  Google Scholar 

  • Lee KH, Shin DH (2007) Characteristics of liquid product from the pyrolysis of waste plastic mixture at low and high temperatures: influence of lapse time of reaction. Waste Manag 27:168–176

    Article  CAS  Google Scholar 

  • Lerici LC, Renzini MS, Pierella LB (2015) Chemical Catalyzed Recycling of Polymers: Catalytic Conversion of PE, PP and PS into Fuels and Chemicals over H-Y. Procedia Mater Sci 8:297–303

    Google Scholar 

  • Li AM, Li XD, Li SQ, Ren Y, Chi Y, Yan JH, Cen KF (1999) Pyrolysis of solid waste in a rotary kiln: influence of final pyrolysis temperature on the pyrolysis products. J Anal Appl Pyrol 50:149–162

    Article  CAS  Google Scholar 

  • Li SQ, Yan JH, Li RD, Chi Y, Cen KF (2002) Axial transport and residence time of MSW in rotary kilns Part I. Experimental. Powder Technol 126:217–227

    Article  CAS  Google Scholar 

  • Li SQ, Ma LB, Wan W, Yan Q (2005) A mathematical model of heat transfer in a rotary kiln thermo-reactor. Chem Eng Sci 28:1480–1489

    CAS  Google Scholar 

  • Lopez G, Olazar M, Artetxe M, Amutio M, Elordi G, Bilbao J (2009) Steam activation of pyrolytic tyre char at different temperatures. J Anal Appl Pyrol 85:539–543

    Article  CAS  Google Scholar 

  • López A, de Marco I, Caballero BM, Laresgoiti MF, Adrados A (2010) Pyrolysis of municipal plastic wastes: influence of raw material composition. Waste Manag 30:620–627

    Article  Google Scholar 

  • Lopez A, Marco ID, Caballero BM, Adrados A, Laresgoiti MF (2011a) Deactivation and regeneration of ZSM-5 zeolite in catalytic pyrolysis of plastic waste. Waste Manag 31:1852–1858b

    Article  CAS  Google Scholar 

  • Lopez A, Marco ID, Caballero BM, Laresgoiti MF, Adrados A, Aranzabal A (2011b) Catalytic pyrolysis of plastic wastes with two different types of catalytic: ZSM-5 zeolite and Red Mud. Appl Catal B: Environ 104:211–219c

    Article  CAS  Google Scholar 

  • López A, De Marco I, Caballero BM, Laresgoiti MF, Adrados A (2011c) Influence of time and temperature on pyrolysis of plastic wastes in a semi-batch reactor. Chemical Engineering Journal 173(1):62–71

    Google Scholar 

  • Lopez A, Marco ID, Caballero BM, Laresgoiti MF, Adrados A (2012) Catalytic stepwise pyrolysis of packaging plastic waste. J Anal Appl Pyrol 96:54–62d

    Article  Google Scholar 

  • Luo S, Xiao B, Hu Z, Liu S (2010) Effect of particle size on pyrolysis of single-component municipal solid waste in fixed bed reactor. Int J Hydrogen Energy 35:93–97

    Article  CAS  Google Scholar 

  • Mani M, Nagarajan G, Sampath S (2011) Characterization and effect of using waste plastic oil and diesel fuel blends in compression ignition engine. Energy 36(1):212–219

    Article  CAS  Google Scholar 

  • Marcilla A, Beltrán MI, Navarro R (2009) Evolution of products during the degradation of polyethylene in a batch reactor. J Anal Appl Pyrol 86:14–21

    Article  CAS  Google Scholar 

  • Marculescu C, Antonini G, Badea A, Apostol T (2007) Pilot installation for the thermo-chemical characterization of solid wastes. Waste Manag 27:367–374

    Article  CAS  Google Scholar 

  • Mastral FJ, Esperanza E, Berrueco C, Juste M, Ceamanos J (2003) Fluidized bed thermal degradation products of HDPE in an inert atmosphere and in air–nitrogen mixtures. J Anal Appl Pyrol 70:1–17

    Article  CAS  Google Scholar 

  • Mastral FJ, Esperanza E, Garcia P, Juste M (2002) Pyrolysis of high-density polyethylene in a fluidised bed reactor. Influence of the temperature and residence time. J Anal Appl Pyrol 63:1–15

    Article  CAS  Google Scholar 

  • MEP: Ministry of Economy and Planning (2010) The nine development plan 2010–2014. Ministry of Economy and Planning Documents, Riyadh, KSA

    Google Scholar 

  • Miskolczi N, Angyal A, Bartha L, Valkai I (2009) Fuel by pyrolysis of waste plastics from agricultural and packaging sectors in a pilot scale reactor. Fuel Process Technol 90:1032–1040

    Article  CAS  Google Scholar 

  • Nizami AS, Ouda OKM, Rehan M, El-Maghraby AMO, Gardy J, Hassanpour A et al (2015a) The potential of Saudi Arabian natural zeolites in energy recovery technologies. Energy 2015, 1–10. http://dx.doi.org/10.1016/j.energy.2015.07.030

    Google Scholar 

  • Nizami AS, Rehan M, Ismail IMI, Almeelbi T, Ouda OKM (2015b) Waste biorefinery in Makkah: A solution to convert waste produced during Hajj and Umrah Seasons into wealth. Conference: 15th Scientific Symposium for Hajj, Umrah and Madinah visit. Held in May 2015 in Madinah, Saudi Arabia. doi: 10.13140/RG.2.1.4303.6560

  • Nizami AS, Rehan M, Ouda OKM, Shahzad K, Sadef Y, Iqbal T, Ismail IMI (2015c) An argument for developing waste-to-energy technologies in Saudi Arabia. Chem Eng Trans 45:337–342. http://dx.doi.org/10.3303/CET1545057

  • Nizami AS, Ismail IMI (2013) Life-cycle Assessment of Biomethane from Lignocellulosic Biomass. Chapter in ‘Life cycle assessment of renewable energy sources’. Green Energy and Technology book series. 2013, DOI: 10.1007/978-1-4471-5364-1_4. Publisher: Springer-Verlag London Ltd

    Google Scholar 

  • Nizami AS, Shahzad K, Rehan M, Ouda OKM, Khan MZ, Ismail IMI, Almeelbi T, Basahi JM, Demirbas A (2016) Developing Waste Biorefinery in Makkah: A Way Forward to Convert Urban Waste into Renewable Energy. Appl Energy http://dx.doi.org/10.1016/j.apenergy.2016.04.116

  • Oasmaa A, Czernik S (1999) Fuel oil quality of biomass pyrolysis oils state of the art for the end users. Energy Fuels 13:914–921

    Article  CAS  Google Scholar 

  • Ohmukai Y, Hasegawa I, Mae K (2008) Pyrolysis of the mixture of biomass and plastics in countercurrent flow reactor Part I: experimental analysis and modeling of kinetics. Fuel 87:3105–3111

    Article  CAS  Google Scholar 

  • Onwudili JA, Insura N, Williams PT (2009) Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time. J Anal Appl Pyrol 86:293–303

    Article  CAS  Google Scholar 

  • Ouda OKM, Cekirge HM, Raza SA (2013) An assessment of the potential contribution from waste-to-energy facilities to electricity demand in Saudi Arabia. Energy Convers Manag 75:402–406

    Article  Google Scholar 

  • Ouda OKM, Raza SA, Al-Waked R, Al-Asad JF, Nizami A-S (2015) Waste-to-energy potential in the Western Province of Saudi Arabia. J King Saud Univ Eng Sci. doi:http://dx.doi.org/10.1016/j.jksues.2015.02.002

    Google Scholar 

  • Ouda OKM, Raza SA, Nizami AS, Rehan M, Al-Waked R, Korres NE (2016) Waste to energy potential: A case study of Saudi Arabia. Renewable Sustainable Energy Rev 61:328–340. http://dx.doi.org/10.1016/j.rser.2016.04.005

    Google Scholar 

  • Panda AK, Singh RK (2013) Experimental optimization of process for the thermo-catalytic degradation of waste polypropylene to liquid fuel. Adv Energy Eng (AEE) 1(3):74–84

    Google Scholar 

  • Panda AK, Singh RK, Mishra DK (2010) Thermolysis of waste plastics to liquid fuel. A suitable method for plastic waste management and manufacture of value added products—A world prospective. Renew Sustain Energy Rev 14:233–248

    Article  CAS  Google Scholar 

  • Patni N, Shah P, Agarwal S, Singhal P (2013) Alternate Strategies for Conversion of Waste Plastic to Fuels. ISRN Renewable Energy. http://dx.doi.org/10.1155/2013/902053

    Google Scholar 

  • Perugini F, Mastellone ML, Arena U (2005) A life cycle assessment of mechanical and feedstock recycling options for management of plastic packaging wastes. Environ Prog 24(2):137–154

    Article  CAS  Google Scholar 

  • Rahmanian N. Ali SHB, Homayoonfard M, Ali NJ, Rehan M, Sadef Y, Nizami AS (2015) Analysis of Physiochemical Parameters to Evaluate the Drinking Water Quality in the State of Perak, Malaysia. J Chem, vol. 2015, Article ID 716125:1–10. http://dx.doi.org/10.1155/2015/716125

  • Rathore D, Nizami AS, Singh A, Pant D (2016) Key issues in estimating energy and greenhouse gas savings of biofuels: challenges and perspectives. Biofuel Res J 10:380–393. DOI: 10.18331/BRJ2016.3.2.3

    Google Scholar 

  • Rehan M, Nizami AS, Shahzad K, Ouda OKM, Ismail IMI, Almeelbi T, Iqbal T, Demirbas A (2016) Pyrolytic liquid fuel: a source of renewable energy in Makkah. Accepted in Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2016.1153753

    Google Scholar 

  • Sánchez ME, Menéndez JA, Domínguez A, Pis JJ, Martínez O, Calvo LF, Bernad PL (2009) Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge. Biomass Bioenerg 33:933–940

    Article  Google Scholar 

  • Sadaf Y, Nizami AS, Batool SA, Chaudhary MN, Ouda OKM, Asam ZZ, Habib K, Rehan M, Demibras A (2015) Waste-to-energy and recycling value for developing integrated solid waste management plan in Lahore. Energy Sources, Part B: Economics, Planning, and Policy. doi:10.1080/1556249.2015.105295

  • Sarker M, Kabir A, Rashid MM, Molla M, Mohammad ASMD (2011) Waste polyethylene terephthalate (PETE-1) conversion into liquid fuel. J Fundam Renew Energy Appl 1:5

    Google Scholar 

  • Serrano DP, Aguado J, Escola JM, Rodriguez JM (2002) European trends in the feedstock recycling of plastic wastes, Stud. Surf Sci Catal 142-B: 77–84

    Google Scholar 

  • Serrano DP (2007) The current status of plastics recycling in Europe. In: Proceedings of ISFR, Jeju, Korea September 16–20

    Google Scholar 

  • Shah SH, Khan ZM, Raja IA, Mahmood Q, Bhatti ZA, Khan J, Farooq A, Rashid N, Wu D (2010) Low temperature conversion of plastic waste into light hydrocarbons. J Hazard Mater 179:15–20

    Article  CAS  Google Scholar 

  • Shahzad K, Rehan M, Ismail IMI, Sagir M, Tahir MS, Bertok B, Nizami AS (2015) Comparative life cycle analysis of different lighting devices, Chem Eng Trans, 45:631–636. doi: 10.3303/CET1545106

  • Sharma BK, Moser BR, Vermillion KE, Doll KM, Rajagopalan N (2014) Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags. Fuel Process Technol 122:79–90

    Article  CAS  Google Scholar 

  • Siddiqui MN, Redhwi HH (2009) Pyrolysis of mixed plastics for the recovery of useful products. Fuel Process Technol 90:545–552

    Article  CAS  Google Scholar 

  • Sriningsih W, Saerodji MG, Trisunaryanti W, Triyono Armunanto R, Falah II (2014) Fuel production from LDPE plastic waste over natural zeolite supported Ni, Ni-Mo, Co and Co-Mo metals. Procedia Environ Sci 20:215–224

    Article  CAS  Google Scholar 

  • Syamsiro M, Hu W, Komoto S, Cheng S, Noviasri P, Prawisudha P, Yoshikawa K (2013) Co-production of liquid and gaseous fuels from polyethylene and polystyrene in a continuous sequential pyrolysis and catalytic reforming system. Energy Environ Res 3(2). ISSN 1927-0569

    Google Scholar 

  • Syamsiro M, Saptoadi H, Norsujianto T, Noviasri Cheng S, Alimuddin Z, Yoshikawa K (2014) Fuel oil production from municipal plastic wastes in sequential pyrolysis and catalytic reforming reactors. Energy Procedia 47:180–188

    Article  CAS  Google Scholar 

  • Tahir MS, Shahzad K, Shahid Z, Sagir M, Rehan M, Nizami AS (2015) Producing methane enriched biogas using solvent absorption method. Chem Eng Trans, 45:1309–1314. doi:10.3303/CET1545219

  • Thorat PV, Warulkar S, Sathone H (2013) Thermofurl—“Pyrolysis of waste plastic to produce liquid hydrocarbons”. Adv Polym Sci Technol Int J. ISSN 2277-7164

    Google Scholar 

  • UNWWD (2014) The United Nations world water development report. Water and energy facts and figures. Available from http://unesdoc.unesco.org/images/0022/002269/226961E.pdf

  • US-EIA (2014) US energy information administration. Country analysis brief, Saudi Arabia Available from: http://www.eia.gov/countries/cab.cfm?fips=sa

  • Walendziewski J (2002) Engine fuels derived from waste plastics by thermal treatment. Fuel 81:473–481

    Article  CAS  Google Scholar 

  • Wang JL, Wang LL (2011) Catalytic pyrolysis of municipal plastic waste to fuel with nickel-loaded silica-alumina catalysts. Energy Sources Part A 33:1940–1948

    Article  CAS  Google Scholar 

  • Wang LH, Zhang Y, Song LN (2006) Experimental research on pyrolysis process of waste rubber. Liaoning Gongcheng Jishu Daxue Xuebao (Ziran Kexue Ban)/J.Liaoning Tech Univ (Natural Science Edition) 25: 336–338

    Google Scholar 

  • Wang WL, Chang JM, Cai LP, Shi SQ (2014) Quality improvement of pyrolysis oil from waste rubber by adding sawdust. Waste Manag 34:2603–2610

    Article  CAS  Google Scholar 

  • Wang ZM, Huang SS (2008) Novel 300 kW arc plasma inverter system based on hierarchical controlled building block structure. China Weld (English Edition) 7:12–16

    Google Scholar 

  • WEC (2013) World Energy Council for sustainable energy: world energy resources survey. Available from https://www.worldenergy.org/wp-content/uploads/2013/09/Complete_WER_2013_Survey.pdf

  • WHO: World Health Organization (2014) Available Online http://www.who.int/gho/urban_health/situation_trends/urban_population_growth_text/en/

  • Williams PT (2005) Waste treatment and disposal. Wiley, Chichester, UK. https://nebm.ist.utl.pt/repositorio/download/2507

  • Williams PT (2006) Yield and composition of gases and oils/waxes from the feedstock recycling of waste plastic. In: Scheirs J, Kaminsky W (eds) Feeds tock recycling and pyrolys is of waste plastics: converting waste plastics into diesel and other fuels. Wiley, West Sussex, pp 285–309

    Chapter  Google Scholar 

  • Williams PT, Williams EA (1999) Interaction of plastics in mixed-plastics pyrolysis. Energy Fuels 13:188–196

    Article  CAS  Google Scholar 

  • Wongkhorsub C, Chindaprasert N (2013) A comparison of the use of pyrolysis oils in diesel engine. Energy Power Eng 5:350–355

    Article  CAS  Google Scholar 

  • Xiong S, Zhuo J, Zhang B, Yao Q (2013) Effect of moisture content on the characterization of products from the pyrolysis of sewage sludge. J Anal Appl Pyrol 104:632–639

    Article  CAS  Google Scholar 

  • Yang X, Sun L, Xiang J, Hu S, Su S (2013) Pyrolysis and dehalogenation of plastics from waste electrical and electronic equipment (WEEE): a review. Waste Manag 33:462–473

    Article  CAS  Google Scholar 

  • Yin C (2002) Microwave-assisted pyrolysis of biomass for liquid biofuels production. Bioresour Technol 120:273–284

    Article  Google Scholar 

  • Yoshioka T, Grause G, Eger G, Kaminsky W, Okuwaki A (2004) Pyrolysis of polyethylene terephthalate in a fluidised bed plant. Polym Degrad Stab 86:499–504

    Article  CAS  Google Scholar 

  • Zhao L, Chen DZ, Wang ZH, Ma XB, Zhou G (2011) Pyrolysis of waste plastics and whole combustible components separated from municipal solid wastes: comparison of products and emissions. In: Proceedings of the thirteen international waste management and landfill symposium, Sardinia, 3–6 Oct 2011, pp 117–118

    Google Scholar 

  • Zhou G, Li J, Yu Y, Li X, Wang Y, Wang W, Komarneni S (2014) Optimizing the distribution of aromatic products from catalytic fast pyrolysis of cellulose by ZSM-5 modification with boron and co-feeding of low-density polyethylene. Appl Catal A 487:45–53

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul-Sattar Nizami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Miandad, R., Rehan, M., Nizami, AS., El-Fetouh Barakat, M.A., Ismail, I.M. (2016). The Energy and Value-Added Products from Pyrolysis of Waste Plastics. In: Karthikeyan, O., Heimann, K., Muthu, S. (eds) Recycling of Solid Waste for Biofuels and Bio-chemicals. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-10-0150-5_12

Download citation

Publish with us

Policies and ethics