Skip to main content

Grey Wolf Optimizer (GWO) Algorithm for Minimum Weight Planer Frame Design Subjected to AISC-LRFD

  • Conference paper
  • First Online:
Proceedings of International Conference on ICT for Sustainable Development

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 409))

Abstract

In this paper, an optimum planer frame design is achieved using the Grey Wolf Optimizer (GWO) algorithm. The GWO algorithm is a nature involved meta-heuristic which is correlated with grey wolves’ activities in social hierarchy. The objective of the GWO algorithm is to produce minimum weight planer frame considering the material strength requirements specified by American Institute for Steel Construction—Load and Resistance Factor Design (AISC-LRFD). The frame design is produced by choosing the W-shaped cross sections from AISC-LRFD steel sections for a beam and column members. A benchmark problem is investigated in the present work to monitor the success rate in a way of best solution and effectiveness of the GWO algorithm. The result of the GWO algorithm is compared with other meta-heuristics, namely GA, ACO, TLBO and EHS. The results show that the GWO algorithm gives better design solutions compared to other meta-heuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Institute of Steel Construction (AISC). (1994). Manual of steel construction load resistance factor design (2nd ed.). Chicago: AISC.

    Google Scholar 

  2. Azad, S. K., & Hasançebi, O. (2013). Upper bound strategy for metaheuristic based design optimization of steel frames. Advances in Engineering Software, 57, 19–32.

    Article  Google Scholar 

  3. Camp, C. V., Bichon, B. J., & Stovall, S. P. (2005). Design of steel frames using ant colony optimization. Journal of Structural Engineering, 131(3), 369–379.

    Article  Google Scholar 

  4. Hall, S. K., Cameron, G. E., & Grierson, D. E. (1989). Least-weight design of steel frameworks accounting for p-δ effects. Journal of Structural Engineering, 115(6), 1463–1475.

    Article  Google Scholar 

  5. Hasançebi, O., & Azad, S. K. (2012). An exponential big bang-big crunch algorithm for discrete design optimization of steel frames. Computers & Structures, 110, 167–179.

    Article  Google Scholar 

  6. Hasançebi, O., Bahçecioğlu, T., Kurç, Ö., & Saka, M. P. (2011). Optimum design of high-rise steel buildings using an evolution strategy integrated parallel algorithm. Computers & Structures, 89(21), 2037–2051.

    Article  Google Scholar 

  7. Hasançebi, O., Çarbaş, S., Doğan, E., Erdal, F., & Saka, M. P. (2010). Comparison of non-deterministic search techniques in the optimum design of real size steel frames. Computers & Structures, 88(17), 1033–1048.

    Article  Google Scholar 

  8. Hasançebi, O., & Carbas, S. (2014). Bat inspired algorithm for discrete size optimization of steel frames. Advances in Engineering Software, 67, 173–185.

    Article  Google Scholar 

  9. Hasançebi, O., Erdal, F., & Saka, M. P. (2009). Adaptive harmony search method for structural optimization. Journal of Structural Engineering, 136(4), 419–431.

    Article  Google Scholar 

  10. Hasançebi, O., & Kazemzadeh A. S. (2013). Reformulations of big bang-big crunch algorithm for discrete structural design optimization. World Academy of Science Engineering and Technology, 74.

    Google Scholar 

  11. Kaveh, A., & Abbasgholiha, H. (2011). Optimum design of steel sway frames using Big Bang-Big Crunch algorithm. Asian Journal of Civil Engineering, 12(3), 293–317.

    Google Scholar 

  12. Kaveh, A., Azar, B. F., Hadidi, A., Sorochi, F. R., & Talatahari, S. (2010). Performance-based seismic design of steel frames using ant colony optimization. Journal of Constructional Steel Research, 66(4), 566–574.

    Article  Google Scholar 

  13. Kaveh, A., & Nasrollahi, A. (2014). Performance-based seismic design of steel frames utilizing charged system search optimization. Applied Soft Computing, 22, 213–221.

    Article  Google Scholar 

  14. Kaveh, A., & Talatahari, S. (2012). Charged system search for optimal design of frame structures. Applied Soft Computing, 12(1), 382–393.

    Article  Google Scholar 

  15. Maheri, M. R., & Narimani, M. M. (2014). An enhanced harmony search algorithm for optimum design of side sway steel frames. Computers & Structures, 136, 78–89.

    Article  Google Scholar 

  16. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.

    Article  Google Scholar 

  17. Murren, P., & Khandelwal, K. (2014). Design-driven harmony search (DDHS) in steel frame optimization. Engineering Structures, 59, 798–808.

    Article  Google Scholar 

  18. Pezeshk, S., Camp, C. V., & Chen, D. (2000). Design of nonlinear framed structures using genetic optimization. Journal of Structural Engineering, 126(3), 382–388.

    Article  Google Scholar 

  19. Pholdee, N., & Bureerat, S. (2014). Comparative performance of meta-heuristic algorithms for mass minimisation of trusses with dynamic constraints. Advances in Engineering Software, 75, 1–13.

    Article  Google Scholar 

  20. Safari, D., Maheri, M. R., & Maheri, A. (2013). On the performance of a modified multiple-deme genetic algorithm in LRFD design of steel frames. IJST, Transactions of Civil Engineering, 169–190.

    Google Scholar 

  21. Safari, D., Maheri, M. R., & Maheri, A. (2011). Optimum design of steel frames using a multiple-deme GA with improved reproduction operators. Journal of Constructional Steel Research, 67(8), 1232–1243.

    Article  Google Scholar 

  22. Serdar, Ç., İbrahim, A., & Mehmet, P. S. (2009). Optimum design of steel frames using adaptive harmony search method to LRFD-AISC. In 8th World Congress on Structural and Multidisciplinary Optimization.

    Google Scholar 

  23. Toğan, V. (2012). Design of planar steel frames using teaching–learning based optimization. Engineering Structures, 34, 225–232.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghanshyam Tejani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Bhensdadia, V., Tejani, G. (2016). Grey Wolf Optimizer (GWO) Algorithm for Minimum Weight Planer Frame Design Subjected to AISC-LRFD. In: Satapathy, S., Joshi, A., Modi, N., Pathak, N. (eds) Proceedings of International Conference on ICT for Sustainable Development. Advances in Intelligent Systems and Computing, vol 409. Springer, Singapore. https://doi.org/10.1007/978-981-10-0135-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0135-2_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0133-8

  • Online ISBN: 978-981-10-0135-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics