Skip to main content

Supporting Teachers to Transform Their Classes into a Context-Based Learning Environment

Inquiry as a Context

  • Chapter
Teachers Creating Context-Based Learning Environments in Science

Part of the book series: Advances in Learning Environments Research ((ALER))

  • 951 Accesses

Abstract

Context-based approaches in science education, such as context-based chemistry or physics are gaining ground. For example, in The Netherlands new context-based curricula have been developed for the natural sciences,1 which will be implemented in the years to come (SLO, 2010). However, in order to create effective contextbased education, teachers will need to change the classroom culture, the social norms and forms of interaction that shape classroom practice (Cobb & Yackel, 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blumberg, E. (2008). Multikriteriale Zielerreichung im naturwissenschaftsbezogenen Sachunterricht der Grundschule – Eine Studie zum Einfluss von Strukturierung in schülerorientierten Lehr-Lernumgebungen auf das Erreichen kognitiver, motivationaler und selbstbezogener Zielsetzungen [Multiple instructional objectives in primary school science education – a study on the influence of structuring in student oriented learning environments on reaching cognitive, motivational and self-directed objectives] (Doctoral dissertation). Westfälischen Wilhelms-Universität, Münster, Germany.

    Google Scholar 

  • Borko, H., Jacobs, J., & Koellner, K. (2010). Contemporary approaches to teacher professional development. In E. Baker, B. McGaw, & P. Peterson (Eds.), International encyclopedia of education (3rd ed., pp. 548–556). Oxford, UK: Elsevier.

    Chapter  Google Scholar 

  • Burgdorf, C. (2010). F4 Audiotranscription (Version 4.2) [Computer software]. Retrieved from www.audiotranskription.de

  • Clarke, D., & Hollingsworth, H. (2002). Elaborating a model of teacher professional growth. Teaching and Teacher Education, 18, 947–967.

    Article  Google Scholar 

  • Cobb, P., & Yackel, E. (1998). A constructivist perspective on the culture of the mathematics classroom. In F. Seeger, J. Voigt, & U. Waschescio (Eds.), The culture of the mathematics classroom. Cambrigde, UK: Cambridge University Press.

    Google Scholar 

  • Cobb, P., Yackel, E., & Wood, T. (1992). A constructivist alternative to the representational view of mind in mathematics education. Journal for Research in Mathematics Education, 23(1), 2–33.

    Article  Google Scholar 

  • Cobb, P., Stephan, M., McClain, K., & Gravemeijer, K. (2001). Participating in classroom mathematical practices. The Journal of the Learning Sciences, 10(1&2), 113–163.

    Article  Google Scholar 

  • Coenders, F. (2010). Teachers’ professional growth during the development and class enactment of context-based chemistry student learning material (Doctoral dissertation). University of Twente, Enschede.

    Google Scholar 

  • Coenders, F., Terlouw, C., Dijkstra, S., & Pieters, J. (2010). The effects of the design and development of a chemistry curriculum reform on teachers’ professional growth: A case study. Journal of Science Teacher Education, 21(5), 535–557.

    Article  Google Scholar 

  • Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159.

    Article  Google Scholar 

  • Duit, R., & von Rhöneck, C. (1998). Learning and understanding key concepts of electricity. In A. Tiberghien, E. J. Jossem, & J. Barajos (Eds.), Connecting research in physics education with teacher education. Columbus, OH: International commission on physics education. Retrieved from http://www.physics.ohio-state.edu/~jossem/ICPE/C2.html

    Google Scholar 

  • Duranti, A., & Goodwin, C. (Eds.). (1992). Rethinking context: Language as an interactive phenomenon. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Freudenthal, H. (1981). Major problems of mathematics education. Educational Studies in Mathematics, 12, 133–150.

    Article  Google Scholar 

  • Fullan, M. (1985). Change processes and strategies at the local level. The Elementary School Journal, 85(3), 391–421.

    Article  Google Scholar 

  • Fullan, M. (2001). The new meaning of educational change. New York, NY: Teachers College Press.

    Google Scholar 

  • Fullan, M., & Stiegelbauer, S. (1991). The new meaning of educational change (2nd ed.). New York, NY: Teachers College Press.

    Google Scholar 

  • Gilbert, J. K. (2006). On the nature of “Context” in chemical education. International Journal of Science Education, 28(9), 957–976.

    Article  Google Scholar 

  • Gravemeijer, K., & Cobb, P. (2006). Design research from a learning design perspective. In J. Van den Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research (pp. 45–85). London: Routledge.

    Google Scholar 

  • Gunstone, R., Mulhall, P., & McKittrick, B. (2009). Physics teachers’ perceptions of the difficulty of teaching electricity. Research in Science Education, 39, 515–538.

    Article  Google Scholar 

  • Hewson, P. H. (2007). Teacher professional development in science. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 1179–1203). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Hung, D., & Chen, D. -T. V. (2007). Context – process authenticity in learning: Implications for identity enculturation and boundary crossing. Educational Technology Research and Development, 55, 147–167.

    Article  Google Scholar 

  • Kock, Z.-J., Taconis, R., Bolhuis, S., & Gravemeijer, K. (2013). Some key issues in creating inquiry-based instructional practices that aim at the understanding of simple electric circuits. Research in Science Education, 43(2), 579–597.

    Article  Google Scholar 

  • Latour, B. (1987). Science in action. Milton Keyes: Open University Press.

    Google Scholar 

  • Leach, J. T., & Scott, P. H. (2008). Teaching for conceptual understanding: An approach drawing on individual and sociocultural perspectives. In S. Vosniadou (Ed.), International handbook of research on conceptual change. New York, NY: Routledge.

    Google Scholar 

  • Licht, P. (1987). Een model voor het elektriciteitsonderwijs [A model for the teaching of electricity]. NVON-maandblad, 12, 264–267.

    Google Scholar 

  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2nd ed.). Thousand Oaks, CA: Sage Publications.

    Google Scholar 

  • Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction—What is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47(4), 474–496.

    Article  Google Scholar 

  • Osborne, J., & Dillon, J. (2008). Science education in Europe: Critical reflections. London: Nuffield Foundation.

    Google Scholar 

  • Park, J., Jang, K.-A., & Kim, I. (2009). An analysis of the actual processes of physicists’ research and the implications for teaching scientific inquiry in school. Research in Science Education, 39, 111–129.

    Article  Google Scholar 

  • Pintó, R. (2005). Introducing curriculum innovations in science: Identifying teachers’ transformations and the design of related teacher education. Science Education, 89(1), 1–12.

    Article  Google Scholar 

  • Shipstone, D. (1985). Electricity in simple circuits. In R. Driver, E. Guesne, & A. Tiberghien (Eds.), Children’s ideas in science. Milton Keynes, UK: Open University Press.

    Google Scholar 

  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.

    Article  Google Scholar 

  • SLO. (2010). Van pilot naar praktijk – Invoeringsplan nieuwe bèta-examenprogramma’s [From pilot to practice – plan for implementation of the new exam programmes in the sciences]. Report. Enschede, Netherlands.

    Google Scholar 

  • Stolk, M. J., De Jong, O., Bulte, A. M. W., & Pilot, A. (2011). Exploring a framework for professional development in curriculum innovation: Empowering teachers for designing context-based chemistry education. Research in Science Education, 41, 369–388.

    Article  Google Scholar 

  • Taber, K. S., de Trafford, T., & Quail, T. (2006). Conceptual resources for constructing the concepts of electricity: The role of models, analogies and imagination. Physics Education, 41(2), 155–160.

    Article  Google Scholar 

  • Taylor, P. C., Fraser, B. J., & Fisher, D. L. (1997). Monitoring constructivist classroom learning environments International Journal of Educational Research, 27(4), 293–302.

    Article  Google Scholar 

  • University of Colorado. (2010). Interactive simulations [Computer Software]. Retrieved from http://phet.colorado.edu/en/simulations/category/new

  • Van Driel, J. H., Verloop, N., Van Werven, I., & Dekkers, H. (1997). Teachers’ craft knowledge and curriculum innovation in higher engineering education. Higher Education, 34, 105–122.

    Article  Google Scholar 

  • Van Veen, K., Zwart, R., Meirink, J., & Verloop, N. (2010). Professionele ontwikkeling van leraren – een reviewstudie naar effectieve kenmerken van professionaliseringsinterventies van leraren [Professional development of teachers – A review study on effective characteristics of interventions for the professionalization of teachers]. Leiden: ICLON/Expertisecentrum Leren van Docenten.

    Google Scholar 

  • Voogt, J., Westbroek, H., Handelzalts, A., Walraven, A., McKenney, S., Pieters, J., & de Vries, B. (2011). Teacher learning in collaborative curriculum design. Teaching and Teacher Education, 27, 1235–1244.

    Article  Google Scholar 

  • Vos, M. (2010). Interaction between teachers and teaching materials: On the implementation of context-based chemistry education (Unpublished doctoral dissertation). Eindhoven University of Technology, Eindhoven.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Sense Publishers

About this chapter

Cite this chapter

Kock, ZJ., Taconis, R., Bolhuis, S., Gravemeijer, K. (2016). Supporting Teachers to Transform Their Classes into a Context-Based Learning Environment. In: Taconis, R., Brok, P.d., Pilot, A. (eds) Teachers Creating Context-Based Learning Environments in Science. Advances in Learning Environments Research. SensePublishers, Rotterdam. https://doi.org/10.1007/978-94-6300-684-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-6300-684-2_9

  • Publisher Name: SensePublishers, Rotterdam

  • Online ISBN: 978-94-6300-684-2

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics