Skip to main content

Spontaneous Symmetry Breaking

  • Chapter
  • First Online:
Quantum Field Theory

Abstract

It may happen that the symmetry in the Lagrangian is broken for some reason and is not apparent. This is called a broken or hidden symmetry. In this case, a quantum of the gauge field corresponding to the broken or hidden symmetry acquires mass, in contrast to the photon. In this chapter, we will discuss a mechanism whereby the symmetry in the Lagrangian is broken.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this section, the notation ϕ μ means ∂ μ ϕ, following the original article by T. Kibble [150].

References

  1. M. Gell-Mann, M. Levy, The axial vector current in beta decay. Nuovo Cim. 16, 705 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Y. Nambu, G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. I. Phys. Rev. 122, 345 (1961)

    Article  ADS  Google Scholar 

  3. Y. Nambu, G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. II. Phys. Rev. 124, 246 (1961)

    Article  ADS  Google Scholar 

  4. J. Goldstone, Field theories with superconductor solutions. Nuovo Cim. 19, 154 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  6. P.W. Higgs, Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132 (1964)

    Article  ADS  Google Scholar 

  7. P.W. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  8. P.W. Higgs, Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 145, 1156 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  9. N. Nakanishi, Indefinite-metric quantum theory of genuine and Higgs-type massive vector fields. Prog. Theor. Phys. 49, 640 (1973)

    Article  ADS  Google Scholar 

  10. P.W. Anderson, Plasmons, gauge invariance, and mass. Phys. Rev. 130, 439 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. T.W.B. Kibble, Symmetry breaking in non-Abelian gauge theories. Phys. Rev. 155, 1554 (1967)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nishijima, K., Chaichian, M., Tureanu, A. (2023). Spontaneous Symmetry Breaking. In: Chaichian, M., Tureanu, A. (eds) Quantum Field Theory. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2190-3_15

Download citation

Publish with us

Policies and ethics