Skip to main content

Plasmonic Effects on Photonic Processes and Devices

  • Conference paper
  • First Online:
Light-Matter Interactions Towards the Nanoscale

Abstract

Nanoplasmonics represents one of the most extensive research fields in optics on the nanoscale and has emerging applications in sensors, light-emitting and photovoltaic devices. It offers a number of positive effects on photonic materials and devices and can be combined with existing technologies by a number of approaches, the colloidal techniques representing the easiest implementation in the existing and emerging photonic components and devices. Plasmonic effects are discussed in terms of the three major physical phenomena (incident field enhancement, photon density of states enhancement, non-radiative decay rate enhancement) in the context of various photonic processes and devices including absorption, Raman scattering, photo- and electroluminescence, photovoltaics, photochemistry and photodetectors. Pros and contras with respect to every practical task are discussed taking into account interplay of the above plasmonic effects in every task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bohren CF, Huffman DR (2008) Absorption and scattering of light by small particles. John Wiley & Sons, NJ

    Google Scholar 

  2. Kreibig U, Vollmer M (2013) Optical properties of metal clusters. Springer Science & Business Media, Heidelberg

    Google Scholar 

  3. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677

    Article  Google Scholar 

  4. Gaponenko SV (2010) Introduction to nanophotonics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Törmä P, Barnes WL (2014) Strong coupling between surface plasmon polaritons and emitters: a review. Rep Prog Phys 78(1):013901

    Article  ADS  Google Scholar 

  6. Baranov DG, Wersäll M, Cuadra J, Antosiewicz TJ, Shegai T (2018) Novel nanostructures and materials for strong light–matter interactions. ACS Photonics 5(1):24–42

    Article  Google Scholar 

  7. Murray WA, Barnes WL (2007) Plasmonic materials. Adv Mater 19(22):3771–3782

    Article  Google Scholar 

  8. Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408(3–4):131–314

    Article  ADS  Google Scholar 

  9. Klimov V (2014) Nanoplasmonics. CRC Press, FL

    Book  Google Scholar 

  10. Gaponenko SV, Guzatov DV (2020) Colloidal plasmonics for active nanophotonics. Proc IEEE 108(5):704–720

    Article  Google Scholar 

  11. Gaponenko SV (2017) Nanophotonics with and without photons. In: NATO ASI on Quantum Nano-Photonics. Springer, Dordrecht, pp 3–16

    Google Scholar 

  12. Novotny L, Van Hulst N (2011) Antennas for light. Nat Photonics 5(2):83–90

    Article  ADS  Google Scholar 

  13. Guzatov DV, Klimov VV (2011) Optical properties of a plasmonic nano-antenna: an analytical approach. New J Phys 13(5):053034

    Article  Google Scholar 

  14. Guzatov DV, Gaponenko SV, Demir HV (2018) Plasmonic enhancement of electroluminescence. AIP Adv 8(1):015324

    Article  ADS  Google Scholar 

  15. Gaponenko SV (2014) Satyendra Nath Bose and nanophotonics. J Nanophotonic 8(1):087599

    Article  ADS  Google Scholar 

  16. Purcell EM (1946) Spontaneous emission probabilities at radio frequencies. Phys Ther Rev 69(2):681–681

    Google Scholar 

  17. Krasnok AE, Slobozhanyuk AP, Simovski CR, Tretyakov SA, Poddubny AN, Miroshnichenko AE, Kivshar YS, Belov PA (2015) An antenna model for the Purcell effect. Sci Rep 5:12956

    Article  ADS  Google Scholar 

  18. Barnett SM, Loudon R (1996) Sum rule for modified spontaneous emission rates. Phys Rev Lett 77(12):2444–2447

    Article  ADS  Google Scholar 

  19. Gaponenko SV, Demir HV (2018) Applied nanophotonics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  20. Gaponenko SV (2002) Effects of photon density of states on Raman scattering in mesoscopic structures. Phys Rev B 65(14):140303

    Article  ADS  Google Scholar 

  21. Kneipp J, Kneipp H, Kneipp K (2008) SERS—a single-molecule and nanoscale tool for bioanalytics. Chem Soc Rev 37(5):1052–1060

    Article  Google Scholar 

  22. Lane LA, Qian X, Nie S (2015) SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem Rev 115(19):10489–10529

    Article  Google Scholar 

  23. Pang S, Yang T, He L (2016) Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC Trends Anal Chem 85(1):73–82

    Article  Google Scholar 

  24. Kulakovich OS, Shabunya-Klyachkovskaya EV, Matsukovich AS, Rasool K, Mahmoud KA, Gaponenko SV (2016) Nanoplasmonic Raman detection of bromate in water. Opt Express 24(2):A174–A179

    Article  ADS  Google Scholar 

  25. Hakonen A, Wu K, Schmidt MS, Andersson PO, Boisen A, Rindzevicius T (2018) Detecting forensic substances using commercially available SERS substrates and handheld Raman spectrometers. Talanta 189:649–652

    Article  Google Scholar 

  26. Muehlethaler C, Leona M, Lombardi JR (2016) Towards a validation of surface-enhanced Raman scattering (SERS) for use in forensic science: repeatability and reproducibility experiments. Forensic Sci Int 268:1–13

    Article  Google Scholar 

  27. Shabunya-Klyachkovskaya EV, Kulakovich OS, Gaponenko SV (2019) Surface enhanced Raman scattering of inorganic microcrystalline art pigments for systematic cultural heritage studies. Spectrochim Acta A Mol Biomol Spectrosc 222:117235

    Article  Google Scholar 

  28. Shabunya-Klyachkovskaya E, Kulakovich O, Vaschenko S, Guzatov D, Gaponenko S (2016) Surface enhanced Raman spectroscopy application for art materials identification. Eur J Sci Theol 12(3):211–220

    Google Scholar 

  29. Bandarenka HV, Girel KV, Zavatski SA, Panarin A, Terekhov SN (2018) Progress in the development of SERS-active substrates based on metal-coated porous silicon. Materials 11(5):852–870

    Article  ADS  Google Scholar 

  30. Klyachkovskaya E, Strekal N, Motevich I, Vaschenko S, Harbachova A, Belkov M, Gaponenko S, Dais C, Sigg H, Stoica T, Grützmacher D (2011) Enhanced Raman scattering of ultramarine on Au-coated Ge/Si-nanostructures. Plasmonics 6(2):413–418

    Article  Google Scholar 

  31. Matsukovich AS, Nalivaiko OY, Chizh KV, Gaponenko SV (2019) Raman scattering enhancement using Au/SiGe and Au/Ge nanostructures. J Appl Spectrosc 86(1):72–75

    Article  ADS  Google Scholar 

  32. Chen Y, Munechika K, Jen-La Plante I, Munro AM, Skrabalak SE, Xia Y, Ginger DS (2008) Excitation enhancement of CdSe quantum dots by single metal nanoparticles. Appl Phys Lett 93(5):053106

    Article  ADS  Google Scholar 

  33. Yang X, Hernandez-Martinez PL, Dang C, Mutlugun E, Zhang K, Demir HV, Sun XW (2015) Electroluminescence efficiency enhancement in quantum dot light-emitting diodes by embedding a silver nanoisland layer. Adv Optic Material 3(10):1439–1445

    Article  Google Scholar 

  34. Kim NY, Hong SH, Kang JW, Myoung N, Yim SY, Jung S, Lee K, Tu CW, Park SJ (2015) Localized surface plasmon-enhanced green quantum dot light-emitting diodes using gold nanoparticles. RSC Adv 5(25):19624–19629

    Article  ADS  Google Scholar 

  35. Pan J, Chen J, Zhao D, Huang Q, Khan Q, Liu X, Tao Z, Zhang Z, Lei W (2016) Surface plasmon-enhanced quantum dot light-emitting diodes by incorporating gold nanoparticles. Opt Express 24(2):A33–A43

    Article  ADS  Google Scholar 

  36. Tsakmakidis KL, Boyd RW, Yablonovitch E, Zhang X (2016) Large spontaneous-emission enhancements in metallic nanostructures: towards LEDs faster than lasers. Opt Express 24(16):17916–17927

    Article  ADS  Google Scholar 

  37. Guzatov DV, Gaponenko SV, Demir HV (2018) Possible plasmonic acceleration of LED modulation for Li-Fi applications. Plasmonics 13(6):2133–2140

    Article  Google Scholar 

  38. Guzatov DV, Gaponenko SV, Tevel OI (2020) Possible enhancement of the modulation ate of light-emitting diodes in wireless optical data transfer networks by means of metal nanoparticles with a dielectric shell. Semiconductors 54(13):1751–1756

    Article  ADS  Google Scholar 

  39. Geddes CD, Lakowicz JR (2002) Metal-enhanced fluorescence. J Fluoresc 12(2):121–129

    Article  Google Scholar 

  40. Strekal N, Maskevich A, Maskevich S, Jardillier JC, Nabiev I (2000) Selective enhancement of Raman or fluorescence spectra of biomolecules using specifically annealed thick gold films. Biopolymer: Original Res Biomol 57(6):325–328

    Article  Google Scholar 

  41. Kulakovich O, Strekal N, Artemyev M, Stupak A, Maskevich S, Gaponenko S (2006) Improved method for fluorophore deposition atop a polyelectrolyte spacer for quantitative study of distance-dependent plasmon-assisted luminescence. Nanotechnology 17(20):5201–5206

    Article  ADS  Google Scholar 

  42. Kulakovich O, Strekal N, Yaroshevich A, Maskevich S, Gaponenko S, Nabiev I, Woggon U, Artemyev M (2002) Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett 2(12):1449–1452

    Article  ADS  Google Scholar 

  43. Van Wijngaarden JT, Van Schooneveld MM, de Mello Donegá C, Meijerink A (2011) Enhancement of the decay rate by plasmon coupling for Eu3+ in an Au nanoparticle model system. Europhys Lett 93(5):57005

    Article  ADS  Google Scholar 

  44. Guzatov DV, Vaschenko SV, Stankevich VV, Lunevich AY, Glukhov YF, Gaponenko SV (2012) Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment. J Phys Chem C 116(19):10723–10733

    Article  Google Scholar 

  45. Sultangaziyev A, Bukasov R (2020) Applications of surface-enhanced fluorescence (SEF) spectroscopy in biodetection and biosensing. Sens Bio-Sens Res 30:100382

    Article  Google Scholar 

  46. Koktysh IV, Melnikova YI, Kulakovich OS, Ramanenka AA, Vaschenko SV, Muravitskaya AO, Gaponenko SV, Maskevich SA (2020) Highly sensitive immunofluorescence assay of prostate-specific antigen using silver nanoparticles. J Appl Spectrosc 87(5):870–876

    Article  ADS  Google Scholar 

  47. Bauch M, Toma K, Toma M, Zhang Q, Dostalek J (2014) Plasmon-enhanced fluorescence biosensors: a review. Plasmonics 9(4):781–799

    Article  Google Scholar 

  48. Vaschenko S, Ramanenka A, Kulakovich O, Muravitskaya A, Guzatov D, Lunevich A, Glukhov Y, Gaponenko S (2016) Enhancement of labeled alpha-fetoprotein antibodies and antigen-antibody complexes fluorescence with silver nanocolloids. Procedia Eng 140:57–66

    Article  Google Scholar 

  49. Akselrod GM, Argyropoulos C, Hoang TB, Ciracì C, Fang C, Huang J, Smith DR, Mikkelsen MH (2014) Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat Photonics 8(11):835–840

    Article  ADS  Google Scholar 

  50. Muravitskaya AO, Trotsiuk LL, Kulakovich OS, Gurinovich LI, Gaponenko SV, Antanovich AV (2019) Refractive index influence on the quantum dots fluorescence near the gold nanorods. Int J Nanosci 18(3–4):1940003

    Article  Google Scholar 

  51. Baxter J, Lesina AC, Guay JM, Weck A, Berini P, Ramunno L (2019) Plasmonic colours predicted by deep learning. Sci Rep 9(1):1–9

    Google Scholar 

  52. Artemyev MV, Gurinovich LI, Stupak AP, Gaponenko SV (2001) Luminescence of CdS nanoparticles doped with Mn. Phys Status Solidi B 224(1):191–194

    Article  ADS  Google Scholar 

  53. Gaponenko SV, Germanenko IN, Petrov EP, Stupak AP, Bondarenko VP, Dorofeev AM (1994) Time-resolved spectroscopy of visibly emitting porous silicon. Appl Phys Lett 64(1):85–87

    Article  ADS  Google Scholar 

  54. Abu-Thabit N, Ratemi E (2020) Hybrid porous silicon biosensors using plasmonic and fluorescent nanomaterials: a mini review. Front Chem 8:454

    Article  ADS  Google Scholar 

  55. Moakhar RS, Gholipour S, Masudy-Panah S, Seza A, Mehdikhani A, Riahi-Noori N, Tafazoli S, Timasi N, Lim YF, Saliba M (2020) Recent advances in plasmonic perovskite solar cells. Adv Sci 7(13):1902448

    Article  Google Scholar 

  56. Zada A, Muhammad P, Ahmad W, Hussain Z, Ali S, Khan M, Khan Q, Maqbool M (2020) Surface plasmonic-assisted photocatalysis and optoelectronic devices with Noble metal nanocrystals: design, synthesis, and applications. Adv Funct Mater 30(7):1906744

    Article  Google Scholar 

  57. Gaponenko SV, Adam PM, Guzatov DV, Muravitskaya AO (2019) Possible nanoantenna control of chlorophyll dynamics for bioinspired photovoltaics. Sci Rep 9(1):1–14

    Article  Google Scholar 

  58. Chen M, Lu H, Abdelazim NM, Zhu Y, Wang Z, Ren W, Kershaw SV, Rogach AL, Zhao N (2017) Mercury telluride quantum dot based phototransistor enabling high-sensitivity room-temperature photodetection at 2000 nm. ACS Nano 11(6):5614–5622

    Article  Google Scholar 

  59. La JA, Kang J, Byun JY, Kim IS, Kang G, Ko H (2021) Highly sensitive and fast perovskite photodetector functionalized by plasmonic Au nanoparticles-alkanethiol assembly. Appl Surf Sci 538:148007

    Article  Google Scholar 

  60. Song F, Tang PS, Durst H, Cramb DT, Chan WC (2012) Nonblinking plasmonic quantum dot assemblies for multiplex biological detection. Angew Chem Int Ed 51(35):8773–8777

    Article  Google Scholar 

  61. Donehue JE, Wertz E, Talicska CN, Biteen JS (2014) Plasmon-enhanced brightness and photostability from single fluorescent proteins coupled to gold nanorods. J Phys Chem C 118(27):15027–15035

    Article  Google Scholar 

  62. Kulakovich O, Gurinovich L, Li H, Ramanenka A, Trotsiuk L, Muravitskaya A, Wei J, Li H, Matveevskaya N, Guzatov DV, Gaponenko S (2020) Photostability enhancement of InP/ZnSe/ZnSeS/ZnS quantum dots by plasmonic nanostructures. Nanotechnology 32(3):035204

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Cooperation with D. V. Guzatov, O. S. Kulakovich, E. V. Shabunya-Klyachkovskaya, A. O. Muravitskaya, A. S. Matsukovich, L. L. Trotsiuk, and A. A. Ramanenka is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Gaponenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gaponenko, S.V. (2022). Plasmonic Effects on Photonic Processes and Devices. In: Cesaria, M., Calà Lesina, A., Collins, J. (eds) Light-Matter Interactions Towards the Nanoscale. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2138-5_1

Download citation

Publish with us

Policies and ethics