Skip to main content

Neotropical Riverine Cichlids: Adaptive Radiation and Macroevolution at Continental Scales

  • Chapter
  • First Online:
The Behavior, Ecology and Evolution of Cichlid Fishes

Part of the book series: Fish & Fisheries Series ((FIFI,volume 40))

Abstract

Neotropical cichlids include over 550 species from Central and South America and the Caribbean and are increasingly recognized as models for studying evolutionary diversification. Cichlinae’s great morphological, ecological, and behavioral diversity is concentrated in the tribes Geophagini, Heroini, and Cichlasomatini. Feeding and swimming morphology broadly fit two gradients of ecomorphological differentiation: An “elongation axis” follows a ram–suction feeding gradient of deep-bodied fishes with diverse diets at one end and mostly predatory shallow-bodied taxa at the other end. Body and fin configurations correspond with habitats spanning open substrate to structured areas. A second gradient of morphology spans suction feeders and biters with benthic-feeding or complex three-dimensional habitats. Several body configurations reflect specializations to live in rapids. Rates of Cichlinae ecomorphological disparity and lineage diversification often showed early, rapid acceleration followed by a slowdown. Early divergence in South America was likely dominated by the radiation of Geophagini. Rapid geophagin diversification into new niches may have precluded divergence in other South American cichlids, particularly Heroini and Cichlasomatini. Further lineage and morphological divergence in Heroini increased after colonization of Central America. Cichlinae appear to have repeatedly radiated by taking advantage of ecological opportunity in novel environments across the Neotropics, resulting in widespread convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilée R, Claessen D, Lambert A (2013) Adaptive radiation driven by the interplay of eco-evolutionary and landscape dynamics. Evolution 67(5):1291–1306

    PubMed  Google Scholar 

  • Alano-Pérez P, Malabarba MC, Papa C (2010) A new genus and species of Heroini (Perciformes: Cichlidae) from the early Eocene of southern South America. Neotrop Ichthyol 8:631–642

    Article  Google Scholar 

  • Albert J, Carvalho T (2011) Neogene assembly of modern faunas. In: Albert J, Reis R (eds) Historical biogeography of neotropical freshwater fishes. University of California Press, pp 119–136

    Google Scholar 

  • Albert JS, Reis RE (2011) Historical biogeography of neotropical freshwater fishes. University of California Press, Berkeley

    Book  Google Scholar 

  • Albert JS, Carvalho TP, Petry P, Holder MA, Maxime EL, Espino J, Corahua I, Quispe R, Rengifo B, Ortega H, Reis RE (2011) Aquatic biodiversity in the Amazon: habitat specialization and geographic isolation promote species richness. Animals 1:205–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Albert JS, Val P, Hoorn C (2018) The changing course of the Amazon River in the neogene: center stage for neotropical diversification. Neotrop Ichthyol 16:e180033

    Article  Google Scholar 

  • Amado MV, Farias IP, Hrbek T (2011) A molecular perspective on systematics, taxonomy and classification Amazonian discus fishes of the genus Symphysodon. Int J Evol Biol 2011(1):360654

    Google Scholar 

  • Arbour JH, López-Fernández H (2013) Ecological variation in South American geophagine cichlids arose during an early burst of adaptive morphological and functional evolution. Proc R Soc B Biol Sci 280:20130849

    Article  Google Scholar 

  • Arbour JH, López-Fernández H (2014) Adaptive landscape and functional diversity of Neotropical cichlids: implications for the ecology and evolution of Cichlinae (Cichlidae; Cichliformes). J Evol Biol 27:2431–2442

    Article  CAS  PubMed  Google Scholar 

  • Arbour JH, López-Fernández H (2016) Continental cichlid radiations: functional diversity reveals the role of changing ecological opportunity in the neotropics. Proc R Soc B Biol Sci 283:20160556

    Article  Google Scholar 

  • Argolo L, Lopez-Fernandez H, Batalha-Filho H, Affonso P (2020) Unraveling the systematics and evolution of the ‘Geophagus brasiliensis (Cichliformes: Cichlidae) species complex. Mol Phylogenet Evol 150:106855

    Google Scholar 

  • Astudillo-Clavijo V, Arbour JH, López-Fernández H (2015) Selection towards different adaptive optima drove the early diversification of locomotor phenotypes in the radiation of Neotropical geophagine cichlids. BMC Evol Biol 15:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Azuma Y, Kumazawa Y, Miya M, Mabuchi K, Nishida M (2008) Mitogenomic evaluation of the historical biogeography of cichlids toward reliable dating of teleostean divergences. BMC Evol Biol 8:215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barluenga M, Stölting KN, Salzburger W, Muschick M, Meyer A (2006) Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature 439:719–723

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu JM, Jhwueng DC, Boettiger C, O’Meara BC (2012) Modeling stabilizing selection: expanding the Ornstein-Uhlenbeck model of adaptive evolution. Evolution 66(8):2369–2383. https://doi.org/10.1111/j.1558-5646.2012.01619.x

    Article  PubMed  Google Scholar 

  • Betancur-R R, Broughton RE, Wiley EO, Carpenter K, López JA, Li C, Holcroft NI, Arcila D, Sanciangco M, Cureton Ii JC, Zhang F, Buser T, Campbell MA, Ballesteros JA, Roa-Varon A, Willis S, Borden WC, Rowley T, Reneau PC, Hough DJ, Lu G, Grande T, Arratia G, Ortí G (2013) The tree of life and a new classification of bony fishes. PLoS Curr. https://doi.org/10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288

  • Betancur-R R, Wiley EO, Arratia G, Acero A, Bailly N, Miya M, Lecointre G, Orti G (2017a) Phylogenetic classification of bony fishes. BMC Evol Biol 17:162. https://doi.org/10.1186/s12862-017-0958-3

  • Betancur-R R, Wiley EO, Arratia GG, Acero A, Bailly N, Miya M, Ortí G, Lecointre G (2017b) Phylogenetic classification of bony fishes. BMC Evol Biol 17:1–40. https://doi.org/10.1186/s12862-017-0958-3

    Article  Google Scholar 

  • Bower LM, Winemiller KO (2019) Fish assemblage convergence along stream environmental gradients: an intercontinental analysis. Ecography 42:1691–1702. https://doi.org/10.1111/ecog.04690

  • Brawand D, Wagner CE, Li YI, Malinsky M, Keller I, Fan S, Simakov O, Ng AY, Lim ZW, Bezault E, Turner-Maier J, Johnson J, Alcazar R, Noh HJ, Russell P, Aken B, Alföldi J, Amemiya C, Azzouzi N, Baroiller J-F, Barloy-Hubler F, Berlin A, Bloomquist R, Carleton KL, Conte MA, D’Cotta H, Eshel O, Gaffney L, Galibert F, Gante HF, Gnerre S, Greuter L, Guyon R, Haddad NS, Haerty W, Harris RM, Hofmann HA, Hourlier T, Hulata G, Jaffe DB, Lara M, Lee AP, MacCallum I, Mwaiko S, Nikaido M, Nishihara H, Ozouf-Costaz C, Penman DJ, Przybylski D, Rakotomanga M, SCP R, Ribeiro FJ, Ron M, Salzburger W, Sanchez-Pulido L, Santos ME, Searle S, Sharpe T, Swofford R, Tan FJ, Williams L, Young S, Yin S, Okada N, Kocher TD, Miska EA, Lander ES, Venkatesh B, Fernald RD, Meyer A, Ponting CP, Streelman JT, Lindblad-Toh K, Seehausen O, Di Palma F (2014) The genomic substrate for adaptive radiation in African cichlid fish. Nature 513:375–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks DR, McLennan DA (1991) Phylogeny, ecology, and behaviour. University of Chicago Press, Chicago

    Google Scholar 

  • Burress ED (2016) Ecological diversification associated with the pharyngeal jaw diversity of Neotropical cichlid fishes. J Anim Ecol 85:302–313

    Article  PubMed  Google Scholar 

  • Burress ED, Tan M (2017) Ecological opportunity alters the timing and shape of adaptive radiation. Evolution (NY) 71:2650–2660. https://doi.org/10.1111/evo.13362

    Article  Google Scholar 

  • Burress ED, Duarte A, Serra WS, Loueiro M, Gangloff MM, Siefferman L (2013) Functional diversification within a predatory species flock. PLoS One 8:e80929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burress ED, Alda F, Duarte A, Loureiro M, Armbruster JW, Chakrabarty P (2018) Phylogenomics of pike cichlids (Cichlidae: Crenicichla): the rapid ecological speciation of an incipient species flock. J Evol Biol 31:14–30

    Google Scholar 

  • Campbell Grant EH (2011) Structural complexity, movement bias, and metapopulation extinction risk in dendritic ecological networks. J North Am Benthol Soc 30:252–258

    Article  Google Scholar 

  • Campbell Grant EH, Lowe WH, Fagan WF (2007) Living in the branches: population dynamics and ecological processes in dendritic networks. Ecol Lett 10:165–175

    Article  PubMed  Google Scholar 

  • Chakrabarty P (2006a) Taxonomic status of the Hispaniolan Cichlidae. Occas Pap Museum Zool Univ Michigan 737:1–17

    Google Scholar 

  • Chakrabarty P (2006b) Systematics and historical biogeography of greater Antillean Cichlidae. Mol Phylogenet Evol 39:619–627. https://doi.org/10.1016/j.ympev.2006.01.014

    Article  PubMed  Google Scholar 

  • Chakrabarty P, Albert J (2011) Not so fast. A new take on the great American biotic interchange. In: Albert JS, Reis RE (eds) Historical biogeography of neotropical freshwater fishes. University of California Press, Berkeley, pp 293–306

    Google Scholar 

  • Claverie T, Wainwright PC (2014) A morphospace for reef fishes: elongation is the dominant axis of body shape evolution. PLoS One 9:e112732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cochran-Biederman JL, Winemiller KO (2010) Relationships among habitat, ecomorphology and diets of cichlids in the Bladen River, Belize. Environ Biol Fish 88:143–152

    Article  Google Scholar 

  • Colatreli OP, Meliciano N, Toffoli D, Farias IP, Hrbek T (2012) Deep phylogenetic divergence and lack of taxonomic concordance in species of Astronotus (Cichlidae). Int J Evol Biol 2012:1–8

    Article  Google Scholar 

  • Collar DC, Wainwright PC, Alfaro ME (2008) Integrated diversification of locomotion and feeding in labrid fishes. Biol Lett 4:84–86

    Article  PubMed  Google Scholar 

  • Correa SB, Winemiller KO, López-Fernández H, Galetti M (2007) Evolutionary perspectives on seed consumption and dispersal by fishes. Bioscience 57:748–756

    Article  Google Scholar 

  • Correa SB, Costa-Pereira R, Fleming T, Goulding M, Anderson JT (2015) Neotropical fish-fruit interactions: eco-evolutionary dynamics and conservation. Biol Rev 90:1263–1278

    Article  PubMed  Google Scholar 

  • Crampton W (2011) An ecological perspective on diversity and distributions. In: Albert J, Reis R (eds) Historical biogeography of neotropical freshwater fishes. University of California Press, pp 165–189

    Google Scholar 

  • Crampton WGR (2008) Ecology and life history of an Amazon floodplain cichlid: the discus fish. Neotrop Ichthyol 6:599–612

    Article  Google Scholar 

  • Day JJ, Cotton JA, Barraclough TG (2008) Tempo and mode of diversification of Lake Tanganyika cichlid fishes. PLoS One 3:e1730

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Day JJ, Bills R, Friel JP (2009) Lacustrine radiations in African Synodontis catfish. J Evol Biol 22:805–817

    Article  CAS  PubMed  Google Scholar 

  • del Papa C, Kirschbaum A, Powell J, Brod A, Hongn F, Pimentel M (2010) Sedimentological, geochemical and paleontological insights applied to continental omission surfaces: a new approach for reconstructing an Eocene foreland basin in NW Argentina. J S Am Earth Sci 29:327–345

    Article  CAS  Google Scholar 

  • Dias MS, Cornu J-F, Oberdorff T, Lasso CA, Tedesco PA (2013) Natural fragmentation in river networks as a driver of speciation for freshwater fishes. Ecography 36:683–689

    Article  Google Scholar 

  • Drucker EG, Jensen JS (1991) Functional analysis of a specialized prey processing behaviour: winnowing by surfperches (Teleostei: Embiotocidae). J Morph 210:267–287

    Article  CAS  PubMed  Google Scholar 

  • Elmer KR, Reggio C, Wirth T, Verheyen E, Salzburger W, Meyer A (2009) Pleistocene desiccation in East Africa bottlenecked but did not extirpate the adaptive radiation of Lake Victoria haplochromine cichlid fishes. Proc Natl Acad Sci USA 106:13404–13409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmer KR, Lehtonen TK, Kautt AF, Harrod C, Meyer A (2010) Rapid sympatric ecological differentiation of crater lake cichlid fishes within historic times. BMC Biol 8:60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fagan WF (2002) Connectivity, fragmentation, and extinction risk in dentritic metapopulations. Ecology 83:3243–3249

    Article  Google Scholar 

  • Farias IP, Hrbek T (2008) Patterns of diversification in the discus fishes (Symphysodon spp. Cichlidae) of the Amazon basin. Mol Phylogenet Evol 49:32–43. https://doi.org/10.1016/j.ympev.2008.05.033

    Article  CAS  PubMed  Google Scholar 

  • Farias IP, Schneider H, Sampaio, I. (1998) Molecular phylogeny of Neotropical cichlids: the relationships of Cichlasomines and Heroines. In: Malabraba LR, Reis RE, Vari RP, Lucena ZM, Lucena CAS (eds) Phylogeny and classification of Neotropical fishes. Editora Universitaria, Pontificia Universidad Catolica do Rio Grande do Sul, Porto Alegre, pp 499–508

    Google Scholar 

  • Farias IP, Ortí G, Meyer A (2000) Total evidence: molecules, morphology, and the phylogenetics of cichlid fishes. J Exp Zool 288:76–92

    Article  CAS  PubMed  Google Scholar 

  • Feilich KL (2016) Correlated evolution of body and fin morphology in the cichlid fishes. Evolution 70:2247–2267

    Article  PubMed  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125(1):1–15

    Article  Google Scholar 

  • Freckleton RP, Harvey PH (2006) Detecting non-Brownian trait evolution in adaptive radiations. PLoS Biol 4:e373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Friedman M, Keck BP, Dornburg A, Eytan RI, Martin CH, Darrin C, Wainwright PC, Near TJ, Hulsey CD (2013) Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting. Proc R Soc B Biol Sci 280:20131733

    Article  Google Scholar 

  • Fryer G, Iles TD (1972) The cichlid fishes of the Great Lakes of Africa. T.F.H. Publications, Neptune City

    Google Scholar 

  • Galis F, Drucker E (1996) Pharyngeal biting mechanics in centrarchid and cichlid fishes: insights into a key evolutionary innovation. J Evol Biol 9:641–670

    Article  Google Scholar 

  • Gavrilets S, Losos JB (2009) Adaptive radiation: contrasting theory with data. Science 323:732–737

    Article  CAS  PubMed  Google Scholar 

  • Genner MJ, Seehausen O, Lunt DH, Joyce DA, Shaw PW, Carvalho GR, Turner GF (2007) Age of cichlids: new dates for ancient lake fish radiations. Mol Biol Evol 24:1269–1282

    Article  CAS  PubMed  Google Scholar 

  • Glor RE (2010) Phylogenetic insights on adaptive radiation. Annu Rev Ecol Evol Syst 41:251–270

    Article  Google Scholar 

  • Grafen A (1989) Philosophical transactions of the Royal Society of London. Phil Trans R Soc A 326:119–157

    CAS  Google Scholar 

  • Grant PR, Grant BR (2008) How and why species multiply: the radiation of Darwin’s finches. Princeton University Press, Princeton

    Google Scholar 

  • Harmon LJ (2018) Phylogenetic comparative methods: learning from trees. https://lukejharmon.github.io/pcm/pdf/phylogeneticComparativeMethods.pdf

  • Harmon LJ, Schulte JA, Larson A, Losos JB (2003) Tempo and mode of evolutionary radiation in iguanian lizards. Science 301:961–964

    Article  CAS  PubMed  Google Scholar 

  • Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W (2008) GEIGER: investigating evolutionary radiations. Bioinformatics 24:129–131. https://doi.org/10.1093/bioinformatics/btm538

    Article  CAS  PubMed  Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, New York

    Google Scholar 

  • Hauser FE, Ilves KL, Schott RK, Castiglione GM, López-Fernández H, Chang BSW (2018) Accelerated evolution and functional divergence of the dim light visual pigment accompanies cichlid colonization of Central America. Mol Biol Evol 34:2650–2664. https://doi.org/10.1093/molbev/msx192

    Article  CAS  Google Scholar 

  • Hoorn C, Wesselingh FP (2010) Amazonia, landscape and species evolution: a look into the past. Blackwell, Chichester

    Google Scholar 

  • Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Särkinen T, Antonelli A, Sanmartin I, Sarkinen T (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931

    Article  CAS  PubMed  Google Scholar 

  • Hori M (1993) Frequency-dependent natural-selection in the handedness of scale-eating cichlid fish. Science 260:216–219

    Article  CAS  PubMed  Google Scholar 

  • Hughes LC, Ortí G, Huang Y, Sun Y, Baldwin CC, Thompson AW, Arcila D, Betancur-R R, Li C, Becker L, Bellora N, Zhao X, Li X, Wang M, Fang C, Xie B, Zhou Z, Huang H, Chen S, Venkatesh B, Shi Q (2018) Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. Proc Natl Acad Sci 115(24):6249–6254. https://doi.org/10.1073/pnas.1719358115

  • Hulsey CD, García De León FJ (2005) Cichlid jaw mechanics: linking morphology to feeding specialization. Funct Ecol 19:487–494

    Article  Google Scholar 

  • Hulsey CD, Garcı́a de León FJ, Sánchez Johnson Y, Hendrickson DA, Near TJ (2004) Temporal diversification of Mesoamerican cichlid fishes across a major biogeographic boundary. Mol Phylogenet Evol 31(2):754–764

    Article  CAS  Google Scholar 

  • Hulsey CD, García de León FJ, Rodiles-Hernández R (2006a) Micro- and macroevolutionary decoupling of cichlid jaws: a test of Liem’s key innovation hypothesis. Evolution 60:2096–2109

    CAS  PubMed  Google Scholar 

  • Hulsey CD, García de León FJ, Rodiles-Hernández R (2006b) Function of a key morphological innovation: fusion of the cichlid pharyngeal jaw. Proc R Soc B 273:669–675

    Article  Google Scholar 

  • Hulsey CD, Hollingsworth PR, Fordyce JA (2010) Temporal diversification of Central American cichlids. BMC Evol Biol 10:279

    Article  PubMed  PubMed Central  Google Scholar 

  • Hulsey CD, Keck BP, Hollingsworth PR (2011) Species tree estimation and the historical biogeography of heroine cichlids. Mol Phylogenet Evol 58:124–131. https://doi.org/10.1016/j.ympev.2010.11.016

    Article  PubMed  Google Scholar 

  • Ilves KL, Torti D, López-Fernández H (2018) Exon-based phylogenomics strengthens the phylogeny of neotropical cichlids and identifies remaining conflicting clades (Cichliformes: Cichlidae: Cichlinae). Mol Phylogenet Evol 118:232–243. https://doi.org/10.1016/j.ympev.2017.10.008

    Article  PubMed  Google Scholar 

  • Ingram T, Mahler DL (2013) SURFACE: detecting convergent evolution from comparative data by fitting Ornstein-Uhlenbeck models with stepwise Akaike Information Criterion. Methods Ecol Evol 4:416–425

    Article  Google Scholar 

  • Irisarri I, Singh P, Koblmuller S, Torres-Dowdall J, Henning F, Franchini P, Fischer C, Lemmon AR, Lemmon EM, Thallinger GG, Sturmbauer C, Meyer A (2018) Phylogenomics uncovers early hybridization and adaptive loci shaping the radiation of Lake Tanganyika cichlid fishes. Nat Commun 9:3159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keenleyside MHA (ed) (1991) Cichlid fishes, behavior, ecology and evolution. Chapman & Hall, London

    Google Scholar 

  • Koblmüller S, Schliewen UK, Duftner N, Sefc KM, Katongo C, Sturmbauer C (2008) Age and spread of the haplochromine cichlid fishes in Africa. Mol Phylogenet Evol 49:153–169

    Article  PubMed  CAS  Google Scholar 

  • Kocher TD (2004) Adaptive evolution and explosive speciation: the cichlid fish model. Nat Rev Genet 5:288–298

    Article  CAS  PubMed  Google Scholar 

  • Kornfield I, Smith PF (2000) African cichlid fishes: model systems for evolutionary biology. Ann Rev Ecol Syst 31:163–196

    Article  Google Scholar 

  • Kullander SO (1983) A revision of the South American cichlid genus Cichlasoma. Swedish Museum of Natural History, Stockholm

    Google Scholar 

  • Kullander SO (1986) The cichlid fishes from the Amazon river drainage of Peru. Swedish Museum of Natural History, Stockholm

    Google Scholar 

  • Kullander SO (1996) Heroina isonycterina, a new genus and species of cichlid fish from Western Amazonia, with comments on cichlasomine systematics. Ichthyol Explor Freshwat 7:149–172

    Google Scholar 

  • Kullander SO (1998) A phylogeny and classification of the Neotropical Cichlidae (Teleostei: Perciformes). In: Malabraba LR, Reis RE, Vari RP, Lucena ZM, Lucena CAS (eds) Phylogeny and classification of neotropical fishes. Editora Universitaria, Pontificia Universidad Catolica do Rio Grande do Sul, Porto Alegre, pp 461–498

    Google Scholar 

  • Kullander S, Ferreira E (2006) A review of the South American cichlid genus Cichla, with descriptions of nine new species (Teleostei: Cichlidae). Ichthyol Explor Freshwat 17(4):289–398

    Google Scholar 

  • Kullander S, Norén M, Frioriksson G, Santos de Lucena CA (2009) Phylogenetic relationships of species of Crenicichla (Teleostei: Cichlidae) from southern South America based on the mitochondrial cytochrome b gene. J Zool Syst Evol Res 48:248–258

    Google Scholar 

  • Kullander SO, Hartel K (1997) The systematic status of cichlid genera described by Louis Agassiz in 1859: Amphilophus, Baiodon, Hypsophrys and Parachromis (Teleostei: Cichlidae). Ichthyol Explor Freshwat 7:193–202

    Google Scholar 

  • Kullander SO, Nijssen H (1989) The cichlid fishes of Suriname. Brill, Amsterdam

    Google Scholar 

  • Kullander SO, Varella HR (2015) Wallace’s pike cichlid gets a name after 160 years: a new species of cichlid fish (Teleostei: Cichlidae) from the Upper Rio Negro in Brazil. Copeia 103:512–519

    Article  Google Scholar 

  • Kusche H, Lee HJ, Meyer A (2012) Mouth asymmetry in the textbook example of scale-eating cichlid fish is not a discrete dimorphism after all. Proc R Soc B 279:4715–4723

    Article  PubMed  PubMed Central  Google Scholar 

  • Liem KF (1973) Evolutionary strategies and morphological innovations: cichlid pharyngeal jaws. Syst Zool 22:425

    Article  Google Scholar 

  • López-Fernández H, Albert J (2011) Paleogene radiations. In: Albert J, Reis R (eds) Historical biogeography of neotropical freshwater fishes. University of California Press, London, pp 105–118

    Google Scholar 

  • López-Fernández H, Taphorn DC (2004) Geophagus abalios, G. dicrozoster and G. winemilleri (Perciformes: Cichlidae), three new species from Venezuela. Zootaxa 439:1–27

    Article  Google Scholar 

  • López-Fernández H, Honeycutt RL, Winemiller KO (2005a) Molecular phylogeny and evidence for an adaptive radiation of geophagine cichlids from South America (Perciformes: Labroidei). Mol Phylogenet Evol 34:227–244

    Article  PubMed  CAS  Google Scholar 

  • López-Fernández H, Honeycutt RL, Stiassny MLJ, Winemiller KO (2005b) Morphology, molecules, and character congruence in the phylogeny of South American geophagine cichlids (Perciformes, Labroidei). Zool Scr 34:627–651

    Article  Google Scholar 

  • López-Fernández H, Winemiller KO, Honeycutt RL (2010) Multilocus phylogeny and rapid radiations in Neotropical cichlid fishes (Perciformes: Cichlidae: Cichlinae). Mol Phylogenet Evol 55:1070–1086

    Article  PubMed  Google Scholar 

  • López-Fernández H, Taphorn DC, Liverpool EA (2012a) Phylogenetic diagnosis and expanded description of the genus Mazarunia Kullander, 1990 (Teleostei: Cichlidae) from the upper Mazaruni River, Guyana, with description of two new species. Neotrop Ichthyol 10:465–486

    Article  Google Scholar 

  • López-Fernández H, Winemiller KO, Montaña C, Honeycutt RL (2012b) Diet-morphology correlations in the radiation of South American geophagine cichlids (Perciformes: Cichlidae: Cichlinae). PLoS One 7:e33997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • López-Fernández H, Arbour JH, Winemiller KO, Honeycutt RL (2013) Testing for ancient adaptive radiations in neotropical cichlid fishes. Evolution 67:1321–1337

    PubMed  Google Scholar 

  • López-Fernández H, Arbour J, Willis S, Watkins C, Honeycutt RL, Winemiller KO (2014) Morphology and efficiency of a specialized foraging behavior, sediment sifting, in Neotropical cichlid fishes. PLoS One 9:e89832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Losos JB (2009) Lizards in an evolutionary tree: ecology and adaptive radiation of anoles. University of California Press, Berkeley

    Google Scholar 

  • Losos JB, Mahler DL (2010) Adaptive radiation: the interaction of ecological opportunity, adaptation, and speciation. In: Bell M, Futuyma D, Eanes WF, Levinton JS (eds) Evolution after Darwin: the first 150 years. Sinauer Associates, Sunderland

    Google Scholar 

  • Lowe-McConnell RH (1964) The fishes of the Rupununi savannah district of British Guiana, South America. Part 1. Ecological groupings of fish species and effects of seasonal cycle on the fish. J Linn Soc (Zool) 45(304):103–144

    Article  Google Scholar 

  • Lowe-McConnell RH (1969) The cichlid fishes of Guyana, South America, with notes on their ecology and breeding behaviour. Zool J Linnean Soc 48:255–302

    Article  Google Scholar 

  • Lowe-McConnell RH (1975) Fish communities in tropical freshwaters. Longman, New York

    Google Scholar 

  • Lowe-McConnell RH (1991) Ecology of cichlids in South American and African waters, excluding the African Great Lakes. In: Keenleyside MH (ed) Cichlid fishes. Behavior, ecology and evolution. Chapman & Hall, London, pp 60–85

    Google Scholar 

  • Lujan NK, Winemiller KO, Armbruster JW (2012) Trophic diversity in the evolution and community assembly of loricariid catfishes. BMC Evol Biol 12:124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundberg JG, Marshall LG, Guerrero J, Horton B, Malabarba MC, Wesselingh FP (1998) The stage for Neotropical fish diversification: a history of tropical South American rivers. In: Malabraba LR, Reis RE, Vari RP, Lucena ZM, Lucena CAS (eds) Phylogeny and classification of Neotropical fishes. Editora Universitaria, Pontificia Universidad Catolica do Rio Grande do Sul, Porto Alegre, pp 13–48

    Google Scholar 

  • Lundberg JG, Sabaj Pérez MH, Dahdul WM, Aguilera OA (2010) The Amazonian Neogene fish fauna. In: Hoorn C, Wesselingh F (eds) Amazonia: landscape and species evolution. Wiley-Blackwell, Oxford, pp 281–301

    Google Scholar 

  • Mahler DL, Ingram T (2014) Phylogenetic comparative methods for studying clade-wide convergence. In: Garamszegi LZ (ed) Modern phylogenetic comparative methods and their application in evolutionary biology. Springer, Berlin

    Google Scholar 

  • Mahler DL, Revell LJ, Glor RE, Losos JB (2010) Ecological opportunity and the rate of morphological evolution in the diversification of Greater Antillean Anoles. Evolution 64:2731–2745

    Article  PubMed  Google Scholar 

  • Mahler DL, Ingram T, Revell LJ, Losos JB (2013) Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341:292–295

    Article  CAS  PubMed  Google Scholar 

  • Malabarba MC (2008) A new cichlid Tremembichthys garciae (Actinopterygii, Perciformes) from the Eocene-Oligocene of eastern Brazil. Rev Bras Paleontol 11:59–68

    Article  Google Scholar 

  • Malabarba MC, Zuleta O, Papa CD (2006) Proterocara argentina, a new fossil cichlid from the Lumbrera formation, Eocene of Argentina. J Vertebr Paleontol 26:267–275

    Article  Google Scholar 

  • Malabarba MC, Malabarba LR, Del Papa C (2010) Gymnogeophagus eocenicus, n. sp. (Perciformes: Cichlidae), an Eocene cichlid from the Lumbrera formation in Argentina. J Vertebr Paleontol 30:341–350

    Article  Google Scholar 

  • Malabarba MC, Malabarba LR, López-Fernández H (2014) On the Eocene cichlids from the Lumbrera formation: additions and implications for the Neotropical ichthyofauna. J Vertebr Paleontol 34:49–58

    Article  Google Scholar 

  • Malabarba LR, Malabarba MC, Reis RE (2015) Descriptions of five new species of the Neotropical cichlid genus Gymnogeophagus Miranda Ribeiro, 1918 (Teleostei: Cichliformes) from the Rio Uruguay drainage. Neotrop Ichthyol 13:637–662

    Article  Google Scholar 

  • Malinsky M, Challis RJ, Tyers AM, Schiffels S, Terai Y, Ngatunga BP, Miska EA, Durbin R, Genner MJ, Turner GF (2015) Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. Science 350:1493–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin CH, Cutler JS, Friel JP, Dening Touokong C, Coop G, Wainwright PC (2015) Complex histories of repeated gene flow in Cameroon crater lake cichlids cast doubt on one of the clearest examples of sympatric speciation. Evolution 69:1406–1422

    Article  PubMed  Google Scholar 

  • Matschiner M (2018) Gondwanan vicariance or trans-Atlantic dispersal of cichlid fishes: a review of the molecular evidence. Hydrobiologia 832:9. https://doi.org/10.1007/s10750-018-3686-9

    Article  Google Scholar 

  • Matschiner M, Z M, Barth J, Starostová Z, Salzburger W, Steel M, Bouckaert R (2017) Bayesian phylogenetic estimation of clade ages supports trans-Atlantic dispersal of cichlid fishes. Syst Biol 66:3–22

    PubMed  Google Scholar 

  • Maza-Benignos M, Lozano-Vilano M (2013) Description of three new species of the genus Herichthys (Perciformes: Cichlidae) from eastern Mexico, with redescription of H. labridens, H. steindachneri, and H. pantostictus. Zootaxa 3734:101–129

    Article  Google Scholar 

  • McMahan CD, Chakrabarty P, Sparks JS, Smith WL, Davis MP (2013) Temporal patterns of diversification across global cichlid biodiversity (Acanthomorpha: Cichlidae). PLoS One 8:e71162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMahan CD, Matamoros WA, Piller KR, Chakrabarty P (2015) Taxonomy and systematics of the herichthyins (Cichlidae: Tribe Heroini), with the description of eight new Middle American Genera. Zootaxa 3999:211–234

    Article  PubMed  Google Scholar 

  • Montaña CG, Winemiller KO (2009) Comparative feeding ecology and habitats use of Crenicichla species (Perciformes: Cichlidae) in a Venezuelan floodplain river. Neotrop Ichthyol 7:267–274

    Article  Google Scholar 

  • Montaña CG, Winemiller KO (2010) Local-scale habitat influences morphological diversity of species assemblages of cichlid fishes in a tropical floodplain river. Ecol Freshw Fish 19:216–227

    Article  Google Scholar 

  • Montaña CG, Winemiller KO (2013) Evolutionary convergence in Neotropical cichlids and Nearctic centrarchids: evidence from morphology, diet, and stable isotope analysis. Biol J Linn Soc 109:146–164

    Article  Google Scholar 

  • Montaña CG, Winemiller KO, Sutton A (2014) Intercontinental comparison of fish ecomorphology: null model tests of community assembly at the patch scale in rivers. Ecol Monogr 84:91–107

    Article  Google Scholar 

  • Murray AM (2001) The oldest fossil cichlids (Teleostei: Perciformes): indication of a 45 million-year-old species flock. Proc R Soc B 268:679–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musilová Z, Říčan O, Janko K, Novák J (2008) Molecular phylogeny and biogeography of the Neotropical cichlid fish tribe Cichlasomatini (Teleostei: Cichlidae: Cichlasomatinae). Mol Phylogenet Evol 46:659–672

    Article  PubMed  CAS  Google Scholar 

  • Musilová Z, Říčan O, Novák J (2009) Phylogeny of the Neotropical cichlid fish tribe Cichlasomatini (Teleostei: Cichlidae) based on morphological and molecular data, with the description of a new genus. J Zool Syst Evol Res 47:234–247

    Article  Google Scholar 

  • Musilová Z, Říčan O, Říčanová Š, Janšta P, Gahura O, Novák J (2015) Phylogeny and historical biogeography of trans-Andean cichlid fishes (Teleostei: Cichlidae). Vertebr Zool 65:333–350

    Google Scholar 

  • Near TJ, Eytan RI, Dornburg A, Kuhn KL, Moore JA, Davis MP, Wainwright PC, Friedman M, Smith WL (2012) Resolution of ray-finned fish phylogeny and timing of diversification. Proc Natl Acad Sci USA 109:13698–13703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Meara BC (2012) Evolutionary inferences from phylogenies: a review of methods. Annu Rev Ecol Evol Syst 43:267–285

    Article  Google Scholar 

  • Pease AA, González-Díaz AA, Rodíles-Hernández R, Winemiller KO (2012) Functional diversity and trait-environment relationships of stream fish assemblages in a large tropical catchment. Freshw Biol 57:1060–1075

    Article  Google Scholar 

  • Pennell MW, Harmon LJ (2013) An integrative view of phylogenetic comparative methods: connections to population genetics, community ecology, and paleobiology. Ann NY Acad Sci 1289:90–105

    Article  PubMed  Google Scholar 

  • Piálek L, Burress E, Dragová K, Almirón A, Casciotta J, Říčan O (2018) Phylogenomics of pike cichlids (Cichlidae: Crenicichla) of the C. mandelburgeri species complex: rapid ecological speciation in the Iguazú River and high endemism in the middle Paraná basin. Hydrobiologia 832:355–375

    Article  CAS  Google Scholar 

  • Piálek L, Říčan O, Casciotta J, Almirón A, Zrzavý J, Říčan O (2012) Multilocus phylogeny of Crenicichla (Teleostei: Cichlidae), with biogeography of the C. lacustris group: species flocks as a model for sympatric speciation in rivers. Mol Phylogenet Evol 62:46–61

    Article  PubMed  Google Scholar 

  • Price SA, Holzman R, Near TJ, Wainwright PC (2011) Coral reefs promote the evolution of morphological diversity and ecological novelty in labrid fishes. Ecol Lett 14:462–469

    Article  CAS  PubMed  Google Scholar 

  • Pybus OG, Harvey PH (2000) Testing macro-evolutionary models using incomplete molecular phylogenies. Proc Biol Sci 267:2267–2272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabosky DL (2014) Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS One 2:e89543

    Article  CAS  Google Scholar 

  • Rabosky DL, Lovette IJ (2008) Density-dependent diversification in North American wood warblers. Proc Biol Sci 275:2363–2371

    PubMed  PubMed Central  Google Scholar 

  • Ready JS, Sampaio I, Schneider H, Vinson C, Dos Santos T, Turner GF (2006) Colour forms of Amazonian cichlid fish represent reproductively isolated species. J Evol Biol 19:1139–1148

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro AC (2006) Tectonic history and the biogeography of the freshwater fishes from the coastal drainages of eastern Brazil: an example of faunal evolution associated with a divergent continental margin. Neotrop Ichthyol 4:225–246

    Article  Google Scholar 

  • Říčan O, Zardoya R, Doadrio I (2008) Phylogenetic relationships of Middle American cichlids (Cichlidae, Heroini) based on combined evidence from nuclear genes, mtDNA, and morphology. Mol Phylogenet Evol 49:941–957

    Article  PubMed  CAS  Google Scholar 

  • Říčan O, Piálek L, Zardoya R, Doadrio I, Zrzavý J (2013) Biogeography of the Mesoamerican Cichlidae (Teleostei: Heroini): colonization through the GAARlandia land bridge and early diversification. J Biogeogr 40:579–593

    Article  Google Scholar 

  • Říčan O, Piálek L, Dragová K, Novák J (2016) Diversity and evolution of the Middle American cichlid fishes (Teleostei: Cichlidae) with revised classification. Vert Zool 66:1–102

    Google Scholar 

  • Salzburger W, Van Bocxlaer B, Cohen AS (2014) Ecology and evolution of the African Great Lakes and their faunas. Annu Rev Ecol Evol Syst 45:519–545

    Article  Google Scholar 

  • Santos ME, Salzburger W (2012) How cichlids diversify. Science 338(6107):619–621

    Article  CAS  PubMed  Google Scholar 

  • Schliewen UK, Tautz D, Pääbo S (1994) Sympatric speciation suggested by monophyly of crater lake cichlids. Nature 368(6472):629–632

    Article  CAS  PubMed  Google Scholar 

  • Schliewen U, Rassmann K, Markmann M, Markert J, Kocher T, Tautz D (2001) Genetic and ecological divergence of a monophyletic cichlid species pair under fully sympatric conditions in Lake Ejagham, Cameroon. Mol Ecol 10:1471–1488

    Article  CAS  PubMed  Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford

    Google Scholar 

  • Schmitter-Soto JJ (2007) A systematic revision of the genus Archocentrus (Perciformes: Cichlidae), with the description of two new genera and six new species. Zootaxa 1603:1–78

    Article  Google Scholar 

  • Schott RK, Refvik SP, Hauser FE, López-Fernández H, Chang BSW (2014) Divergent positive selection in rhodopsin from lake and riverine cichlid fishes. Mol Biol Evol 31:1149–1165

    Article  CAS  PubMed  Google Scholar 

  • Schwarzer J, Misof B, Tautz D, Schliewen UK (2009) The root of the East African cichlid radiations. BMC Evol Biol 9:186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwarzer J, Misof B, Ifuta SN, Schliewen UK (2011) Time and origin of cichlid colonization of the lower Congo rapids. PLoS One 6:e22380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seehausen O (2002) Patterns in fish radiation are compatible with Pleistocene desiccation of Lake Victoria and 14,600 year history for its cichlid species flock. Proc Roy Soc B 269:491–497

    Article  Google Scholar 

  • Seehausen O (2006) African cichlid fish: a model system in adaptive radiation research. Proc R Soc B 273:1987–1998

    Article  PubMed  PubMed Central  Google Scholar 

  • Seehausen O (2015) Process and pattern in cichlid radiations – inferences for understanding unusually high rates of evolutionary diversification. New Phytol 207:304–312

    Article  PubMed  Google Scholar 

  • Seehausen O, Wagner CE (2014) Speciation in freshwater fishes. Annu Rev Ecol Evol Syst 45:621–651

    Article  Google Scholar 

  • Seehausen O, Terai Y, Magalhaes IS, Carleton KL, Mrosso HDJ, Miyagi R, van der Sluijs I, Schneider MV, Maan ME, Tachida H, Imai H, Okada N (2008) Speciation through sensory drive in cichlid fish. Nature 455:620–626

    Article  CAS  PubMed  Google Scholar 

  • Sidlauskas B (2008) Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution 62:3135–3156

    Article  PubMed  Google Scholar 

  • Simpson GG (1944) Tempo and mode in evolution. Columbia University Press, New York

    Google Scholar 

  • Simpson GG (1953) The major features of evolution. Columbia University Press, New York

    Book  Google Scholar 

  • Slater GJ, Pennell MW (2014) Robust regression and posterior predictive simulation increase power to detect early bursts of trait evolution. Syst Biol 63:293–308

    Article  PubMed  Google Scholar 

  • Smith L, Chakrabarty P, Sparks J (2008) Phylogeny, taxonomy, and evolution of Neotropical cichlids (Teleostei: Cichlidae: Cichlinae). Cladistics 24:625–641

    Article  Google Scholar 

  • Soria-Barreto M, Rodiles-Hernández R (2008) Spatial distribution of cichlids in Tzendales River, Biosphere Reserve Montes Azules, Chiapas, Mexico. Environ Biol Fish 83:459–469

    Article  Google Scholar 

  • Soria-Barreto M, Rodiles-Hernández R, Winemiller KO (2019) Trophic ecomorphology of cichlid fishes of Selva Lacandona, Usumacinta, Mexico. Environ Biol Fish 102:985–996. https://doi.org/10.1007/s10641-019-00884-5

    Article  Google Scholar 

  • Sparks JS (2004) Molecular phylogeny and biogeography of the Malagasy and South Asian cichlids (Teleostei: Perciformes: Cichlidae). Mol Phylogenet Evol 30:599–614

    Article  CAS  PubMed  Google Scholar 

  • Sparks JS, Smith W (2004) Phylogeny and biogeography of cichlid fishes (Teleostei: Perciformes: Cichlidae). Cladistics 20:501–517

    Article  PubMed  Google Scholar 

  • Steele SE, Lopez-Fernandez H (2014) Body size diversity and frequency distributions of neotropical cichlid fishes (Cichliformes: Cichlidae: Cichlinae). PLoS One 9:e106336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stiassny MLJ (1991) Phylogenetic intrarelationships of the family Cichlidae: an overview. In: Keenleyside MHA (ed) Cichlid fishes: behavior, ecology and evolution. Chapman & Hall, London, pp 1–35

    Google Scholar 

  • Tagliacollo VA, Duke-Sylvester SM, Matamoros WA, Chakrabarty P, Albert JS (2017) Coordinated dispersal and pre-isthmian assembly of the central American Ichthyofauna. Syst Biol 66:183–196

    PubMed  Google Scholar 

  • Tee-Van J (1935) Cichlid fishes in the West Indies with special reference to Haiti, including the description of a new species of Cichlasoma. Zoologica 10:5–22

    Google Scholar 

  • Terai Y, Seehausen O, Sasaki T, Takahashi K, Mizoiri S, Sugawara T, Sato T, Watanabe M, Konijnendijk N, Mrosso HDJ, Tachida H, Imai H, Shichida Y, Okada N (2006) Divergent selection on opsins drives incipient speciation in Lake Victoria cichlids. PLoS Biol 4:e433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomaz AT, Christie MR, Knowles LL (2016) The architecture of river networks can drive the evolutionary dynamics of aquatic populations. Evolution 70:731–739

    Article  PubMed  Google Scholar 

  • Torres-Dowdall J, Meyer A (2021) Sympatric and allopatric diversification in the adaptive radiations of Midas cichlids in Nicaraguan Lakes. In: Abate ME, Noakes DLG (eds) The behavior, ecology and evolution of cichlid fishes. Springer Nature, Dordrecht, pp 175–216. https://doi.org/10.1007/978-94-024-2080-7_6 

  • Torres-Dowdall J, Henning F, Elmer KR, Meyer A (2015) Ecological and lineage specific factors drive the molecular evolution of rhodopsin in cichlid fishes. Mol Biol Evol 32:2876–2882

    Article  CAS  PubMed  Google Scholar 

  • Varella HR, Moreira CR (2013) Teleocichla wajapi, a new species of cichlid from the Rio Jari, Brazil, with comments on T. centrarchus Kullander, 1988 (Teleostei: Cichlidae). Zootaxa 3641:177–187

    Article  PubMed  Google Scholar 

  • Varella HR, Zuanon J, Kullander SO, López-Fernández H (2016) Teleocichla preta, a new species of cichlid from the Rio Xingu Basin in Brazil (Teleostei: Cichlidae). J Fish Biol 89:1–19. https://doi.org/10.1111/jfb.13053

    Article  Google Scholar 

  • Verheyen E, Salzburger W, Snoeks J, Meyer A (2003) Origin of the superflock of cichlid fishes from Lake Victoria, East Africa. Science 300:325–329

    Article  CAS  PubMed  Google Scholar 

  • Wagner CE, Harmon LJ, Seehausen O (2012) Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487(7407):366–369

    Article  CAS  PubMed  Google Scholar 

  • Waltzek TB, Wainwright PC (2003) Functional morphology of extreme jaw protrusion in Neotropical cichlids. J Morphol 257:96–106

    Article  PubMed  Google Scholar 

  • Weller HI, McMahan CD, Westneat MW (2017) Dirt-sifting devilfish: winnowing in the geophagine cichlid Satanoperca daemon and evolutionary implications. Zoomorphology 136(1):45–59. https://doi.org/10.1007/s00435-016-0335-6

    Article  Google Scholar 

  • Willis SC (2017) One species or four? Yes!...and, no. Or, arbitrary assignment of lineages to species obscures the diversification processes of Neotropical fishes. PLoS One 12:e0172349. https://doi.org/10.1371/journal.pone.0172349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willis SC, Winemiller KO, López-Fernández H (2005) Habitat structural complexity and morphological diversity of fish assemblages in a Neotropical floodplain river. Oecologia 142:284–295

    Article  CAS  PubMed  Google Scholar 

  • Willis SC, López-Fernández H, Montaña CG, Farias IP, Ortí G (2012) Species-level phylogeny of “Satan’s perches” based on discordant gene trees (Teleostei: Cichlidae: Satanoperca Günther 1862). Mol Phylogenet Evol 63:798–808

    Article  PubMed  Google Scholar 

  • Willis SC, Farias IP, Ortí G (2014) Testing mitochondrial capture and deep coalescence in Amazonian cichlid fishes (Cichlidae: Cichla). Evolution 68:256–268

    Google Scholar 

  • Winemiller KO (1989) Ontogenetic diet shifts and resource partitioning among piscivorous fishes in the Venezuelan llanos. Environ Biol Fish 26:177–199

    Article  Google Scholar 

  • Winemiller KO (1990) Spatial and temporal variation in tropical fish trophic networks. Ecol Monogr 60:331–367

    Article  Google Scholar 

  • Winemiller KO, Kelso-Winemiller LC, Brenkert AL (1995) Ecomorphological diversification and convergence in fluvial cichlid fishes. Environ Biol Fish 44:235–261

    Article  Google Scholar 

  • Winemiller KO, Montoya JV, Roelke DL, Layman CA, Cotner JB (2006) Seasonally varying impact of detritivorous fishes on the benthic ecology of a tropical floodplain river. J North Am Bentol Soc 25:250–262

    Article  Google Scholar 

  • Yoder JB, Clancey E, Des Roches S, Eastman JM, Gentry L, Godsoe W, Hagey TJ, Jochimsen D, Oswald BP, Robertson J, Sarver BAJ, Schenk JJ, Spear SF, Harmon LJ (2010) Ecological opportunity and the origin of adaptive radiations. J Evol Biol 23:1581–1596

    Article  CAS  PubMed  Google Scholar 

  • Zuanon J (1999) História natural da ictiofauna de corredeiras do Rio Xingu, na região de Altamira, Pará. PhD Dissertation. Universidade Estadual de Campinas, Campinas, Brazil

    Google Scholar 

Download references

Acknowledgments

I am grateful to M. Abate and D. Noakes for their invitation to contribute to this volume. K. Winemiller, J. Albert, J. Arbour, V. Astudillo-Clavijo, and F. Hauser provided valuable comments to an earlier version of the manuscript. For their long-term collaboration, support, and exchange of ideas related to Neotropical cichlid evolution and ecology, I am thankful to K. O. Winemiller, J. Arbour, J. S. Albert, D. C. Taphorn, S. C. Willis, C. G. Montaña, V. Astudillo-Clavijo, F. E. Hauser, S. E. Steele, K. L. Ilves, N. K. Lujan, D. D. Bloom, G. Ortí, M. L. J. Stiassny, M. C. Malabarba, R. L. Honeycutt, B. Chang, A. Pease, J. Cochran-Biederman, N. R. Lovejoy, and M. Kolmann. Funding for research and fieldwork associated with this chapter was provided by the Royal Ontario Museum and the Royal Ontario Museum Governors, Discovery Grants from the Natural Sciences and Engineering Research Council of Canada, the National Geographic Society, the University of Michigan and the Academy of Natural Sciences of Drexel University to the author; and by the U.S. National Science Foundation (DEB 0516831) to K. O. Winemiller, R. L. Honeycutt, and the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernán López-Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

López-Fernández, H. (2021). Neotropical Riverine Cichlids: Adaptive Radiation and Macroevolution at Continental Scales. In: Abate, M.E., Noakes, D.L. (eds) The Behavior, Ecology and Evolution of Cichlid Fishes. Fish & Fisheries Series, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2080-7_5

Download citation

Publish with us

Policies and ethics