Skip to main content

Recent Advances of Electrospinning and Multifunctional Electrospun Textile Materials for Chemical and Biological Protection

  • Conference paper
  • First Online:
Nanoscience and Nanotechnology in Security and Protection against CBRN Threats

Abstract

The primary task of protective clothing is to maximize the user’s survival, sustainability and effectiveness against cold, heat, fire, ballistic, biological, radiological, nuclear and chemical agents. The protective textiles made of many different fabric materials have been widely used to provide effective protection for various specific applications. With the recent and ongoing advancements in nanotechnology, it is desirable that protective textiles have multifunctional properties. Thus, the newly developed composite materials gained various features such as flame retardancy, UV protection, pollutant capturing, antibacterial property, decontamination, detoxification and self-cleaning ability as well as providing wearing comfort. These properties can be achieved by incorporating functional agents (specific functional ligands or molecules, nanoparticles and drugs) into fabricated materials. Therefore, a new generation of protective fabrics has been produced in recent years. Electrospun textile materials are suitable for use as new protective clothing due to their easy production method, breathable, lightweight, comfortable and functionalizable properties. The electrospun membranes can be fabricated with diverse morphologies (core-shell, side-by-side, multilayer, hollow interior and with high porosity) by regulating the operating conditions and modifying the needle device. Electrospun nanofibers can be used in various application areas including filtration, sensing, wastewater treatment, biomedicine and protective textiles due to their extraordinary physicochemical features at nano level. This chapter aims to review recent advances of the electrospinning technique and the use of multi-functional electrospun materials for protection against chemical and biological agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gorji M, Bagherzadeh R, Fashandi H (2017) Electrospun nanofibers in protective clothing. In: Woodhead publishing series in textiles, vol 186. Woodhead publishing, pp 571–598

    Google Scholar 

  2. Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49:2387–2425. https://doi.org/10.1016/J.POLYMER.2008.02.002

    Article  Google Scholar 

  3. Xie J, Li X, Xia Y (2008) Putting electrospun nanofibers to work for biomedical research. Macromol Rapid Commun 29:1775–1792. https://doi.org/10.1002/MARC.200800381

    Article  Google Scholar 

  4. Wang C, Wang J, Zeng L et al (2019) Fabrication of electrospun polymer nanofibers with diverse morphologies. Molecules 24:1–33. https://doi.org/10.3390/molecules24050834

    Google Scholar 

  5. Anton F (1934) Process and apparatus for preparing artificial threads. US Patent 1,975,504 (2 Oct 1934)

    Google Scholar 

  6. Garg K, Bowlin GL (2011) Electrospinning jets and nanofibrous structures. Biomicrofluidics 5:1–19. https://doi.org/10.1063/1.3567097

    Article  Google Scholar 

  7. Bölgen N, Menceloğlu YZ, Acatay K et al (2005) In vitro and in vivo degradation of non-woven materials made of poly(ε-caprolactone) nanofibers prepared by electrospinning under different conditions. J Biomater Sci Polym Ed 16:1537–1555. https://doi.org/10.1163/156856205774576655

    Article  Google Scholar 

  8. Smith LA, Ma PX (2004) Nano-fibrous scaffolds for tissue engineering. Colloid Surface B 39:125–131. https://doi.org/10.1016/J.COLSURFB.2003.12.004

    Article  Google Scholar 

  9. Liu H, Ding X, Zhou G et al (2013) Electrospinning of nanofibers for tissue engineering applications. J Nanomater 2013:1–11. https://doi.org/10.1155/2013/495708

    Google Scholar 

  10. Demir D, Güreş D, Tecim T et al (2018) Magnetic nanoparticle-loaded electrospun poly(ε-caprolactone) nanofibers for drug delivery applications. Appl Nanosci 8:1461–1469. https://doi.org/10.1007/s13204-018-0830-9

    Article  ADS  Google Scholar 

  11. Yeniay E, Öcal L, Altun E et al (2019) Nanofibrous wound dressing material by electrospinning method. Int J Polym Mater Polym Biomater 68:11–18. https://doi.org/10.1080/00914037.2018.1525718

    Article  Google Scholar 

  12. Mirjalili M, Zohoori S (2016) Review for application of electrospinning and electrospun nanofibers technology in textile industry.J nanostructure Chem 6:207–213. https://doi.org/10.1007/s40097-016-0189-y

  13. Tlili I, Alkanhal TA (2019) Nanotechnology for water purification: electrospun nanofibrous membrane in water and wastewater treatment. J Water Reuse Desalin 9:232–248. https://doi.org/10.2166/wrd.2019.057

    Article  Google Scholar 

  14. Faccini M, Vaquero C, Amantia D (2012) Development of protective clothing against nanoparticle based on electrospun nanofibers. J Nanomater 2012:1–9. https://doi.org/10.1155/2012/892894

    Article  Google Scholar 

  15. Raza A, Li Y, Sheng J et al (2014) Protective clothing based on electrospun nanofibrous membranes. Electrospun nanofibers for energy and environmental applications, Springer, Heidelberg, In

    Book  Google Scholar 

  16. Habibi Jouybari M, Hosseini S, Mahboobnia K et al (2019) Simultaneous controlled release of 5-FU, DOX and PTX from chitosan/PLA/5-FU/g-C3N4-DOX/g-C3N4-PTX triaxial nanofibers for breast cancer treatment in vitro. Colloid Surface B 179:495–504. https://doi.org/10.1016/J.COLSURFB.2019.04.026

    Article  Google Scholar 

  17. Pakravan M, Heuzey M-C, Ajji A (2012) Core–shell structured PEO-chitosan nanofibers by coaxial electrospinning. Biomacromolecules 13:412–421. https://doi.org/10.1021/bm201444v

    Article  Google Scholar 

  18. Khalf A, Madihally SV (2017) Modeling the permeability of multiaxial electrospun poly(ε-caprolactone)-gelatin hybrid fibers for controlled doxycycline release. Mater Sci Eng C 76:161–170. https://doi.org/10.1016/J.MSEC.2017.03.093

    Article  Google Scholar 

  19. Khalf A, Madihally SV (2017) Recent advances in multiaxial electrospinning for drug delivery. Eur J Pharm Biopharm 112:1–17. https://doi.org/10.1016/J.EJPB.2016.11.010

    Article  Google Scholar 

  20. Begum HA, Khan MKR (2017) Study on the various types of needle based and needleless electrospinning system for nanofiber production. Int J Text Sci 6:110–117

    Google Scholar 

  21. Tian L, Zhao C, Li J et al (2015) Multi-needle, electrospun, nanofiber filaments: effects of the needle arrangement on the nanofiber alignment degree and electrostatic field distribution. Text Res J 85:621–631. https://doi.org/10.1177/0040517514549990

    Article  Google Scholar 

  22. SalehHudin HS, Mohamad EN, Mahadi WNL et al (2018) Multiple-jet electrospinning methods for nanofiber processing: a review. Mater Manuf Process 33:479–498. https://doi.org/10.1080/10426914.2017.1388523

    Article  Google Scholar 

  23. Zhu Z, Xu G, Chen R et al (2018) Uniform electric field enabled multi-needles electrospinning head based on trapezoid arrangement. AIP Adv 8:1–9. https://doi.org/10.1063/1.5026908

    Google Scholar 

  24. Liu Z, Chen R, He J (2016) Active generation of multiple jets for producing nanofibres with high quality and high throughput. Mater Des 94:496–501. https://doi.org/10.1016/j.matdes.2016.01.075

    Article  Google Scholar 

  25. Sensini A, Cristofolini L (2018) Biofabrication of electrospun scaffolds for the regeneration of tendons and ligaments. Materials (Basel) 11:1–43. https://doi.org/10.3390/ma11101963

    Article  Google Scholar 

  26. DeFrates KG, Moore R, Borgesi J et al (2018) Protein-based fiber materials in medicine: a review. Nano 8:1–26. https://doi.org/10.3390/nano8070457

    Google Scholar 

  27. Sonseca A, Sahay R, Stepien K et al (2018) Architectured helically coiled scaffolds from elastomeric poly(butylene succinate) (PBS) copolyester via wet electrospinning. ChemRxiv 1–23. https://doi.org/10.26434/chemrxiv.6353402

  28. Majidi SS, Slemming-Adamsen P, Hanif M et al (2018) Wet electrospun alginate/gelatin hydrogel nanofibers for 3D cell culture. Int J Biol Macromol 118:1648–1654. https://doi.org/10.1016/j.ijbiomac.2018.07.005

    Article  Google Scholar 

  29. Gibson P, Schreuder-Gibson H, Rivin D (2001) Transport properties of porous membranes based on electrospun nanofibers. Colloids Surfaces A Physicochem Eng Asp 187:469–481. https://doi.org/10.1016/S0927-7757(01)00616-1

    Article  Google Scholar 

  30. Jang YJ, Kim K, Tsay OG et al (2015) Destruction and detection of chemical warfare agents. Chem Rev 115:1–76. https://doi.org/10.1021/acs.chemrev.5b00402

    Article  Google Scholar 

  31. Lee J, Seo E, Yoo M et al (2019) Preparation of non-woven nanofiber webs for detoxification of nerve gases. Polymer 179:1–9. https://doi.org/10.1016/j.polymer.2019.121664

    Google Scholar 

  32. Liang H, Yao A, Jiao X et al (2018) Fast and sustained degradation of chemical warfare agent simulants using flexible self-supported metal-organic framework filters. ACS Appl Mater Interfaces 10:20396–20403. https://doi.org/10.1021/acsami.8b02886

    Article  Google Scholar 

  33. Dwyer DB, Liu J, Gomez JC et al (2019) Metal hydroxide/polymer textiles for decontamination of toxic organophosphates: an extensive study of wettability, catalytic activity, and the effects of aggregation. ACS Appl Mater Interfaces 11:31378–31385. https://doi.org/10.1021/acsami.9b10440

    Article  Google Scholar 

  34. Gold K, Slay B, Knackstedt M et al (2018) Antimicrobial activity of metal and metal-oxide based nanoparticles Adv Ther:1. https://doi.org/10.1002/adtp.201700033

  35. Jayakumar R, Prabaharan M, Nair SV et al (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150. https://doi.org/10.1016/j.biotechadv.2009.11.001

    Article  Google Scholar 

  36. Gugliuzza A, Drioli E (2013) A review on membrane engineering for innovation in wearable fabrics and protective textiles. J Memb Sci 446:350–375. https://doi.org/10.1016/j.memsci.2013.07.014

    Article  Google Scholar 

  37. Sinha MK, Das BR (2018) Chitosan nanofibrous materials for chemical and biological protection. J Text Fibrous Mater 1:1–13. https://doi.org/10.1177/2515221118788370

    Google Scholar 

  38. Khan MQ, Kharaghani D, Nishat N et al (2019) Preparation and characterizations of multifunctional PVA/ZnO nanofibers composite membranes for surgical gown application. J Mater Res Technol 8:1328–1334. https://doi.org/10.1016/j.jmrt.2018.08.013

  39. Vaseashta A (2007) Controlled formation of multiple Taylor cones in electrospinning process Appl Phys Lett:90. https://doi.org/10.1063/1.2709958

  40. Aliheidari N, Aliahmad N, Agarwal M et al (2019) Electrospun nanofibers for label-free sensor applications. Sensors 19:1–27. https://doi.org/10.3390/s19163587

    Article  Google Scholar 

  41. Wang SL, Zhang CL, Song QH (2019) Selectively instant-response nanofibers with a fluorescent chemosensor toward phosgene in gas phase. J Mater Chem C 7:1510–1517. https://doi.org/10.1039/C8TC05281F

    Article  Google Scholar 

  42. Supraja P, Tripathy S, Krishna Vanjari SR et al (2019) Label free, electrochemical detection of atrazine using electrospun Mn2O3 nanofibers: towards ultrasensitive small molecule detection. Sensors Actuators B Chem 285:317–325. https://doi.org/10.1016/j.snb.2019.01.060

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nimet Bölgen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Demir, D., Vaseashta, A., Bölgen, N. (2020). Recent Advances of Electrospinning and Multifunctional Electrospun Textile Materials for Chemical and Biological Protection. In: Petkov, P., Achour, M., Popov, C. (eds) Nanoscience and Nanotechnology in Security and Protection against CBRN Threats. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2018-0_22

Download citation

Publish with us

Policies and ethics