Skip to main content

Iron Concentration Effect on the Microwave Dielectric Properties of BiNbO4 Ceramics

  • Conference paper
  • First Online:
Advanced Nanotechnologies for Detection and Defence against CBRN Agents

Abstract

Ceramic dielectrics based on bismuth are recognized as materials with low sintering temperature and have been studied for different applications in the microelectronic area. Since 1992, when Kagata reported the microwave dielectric properties of bismuth niobate (BiNbO4), various attempts have been undertaken to improve the microwave dielectric properties of this ceramic material. Besides the addition of different oxides, such as CuO, ZnO, V2O5, PbO, Bi2O3 and Fe2O3, several researchers tried to improve bismuth niobate properties by adding lanthanides. In this work, (Bi1-xFex)NbO4 (0.00≤ × ≤1.00) samples were prepared using the sol-gel method. The fine particles were pressed into cylinders and heat-treated at specific temperatures. Single phase samples of BiNbO4 (x = 0.00) and FeNbO4 (x = 1.00) were then used as precursors for (Bi1-xFex)NbO4, prepared by the solid state reaction method. The microwave dielectric characterization of the samples was performed using the small perturbation method, and related to their structure. With the sol-gel method the substitution of bismuth by iron was successful, since two non-stoichiometric phases, Bi1.34Fe0.66Nb1.34O6.35 and Bi1.721Fe1.056Nb1.134O7, were obtained. Moreover, the inclusion of iron inhibited the formation of low and high temperature triclinic bismuth niobate. With the solid state technique, the substitution of bismuth by iron was not achieved; it was observed that the dielectric constant decreases with the increase of the FeNbO4 phase and that the dielectric losses follow the opposite trend.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tzou W, Yang C, Chen W, Chen P (2000) Improvements in the sintering and microwave properties of BiNbO4 microwave ceramics by V2O5 addition. J Eur Ceram Soc 20:991–996

    Google Scholar 

  2. Sebastian MT, Jantunen H (2008) Low loss dielectric materials for LTCC applications: a review. Int Mater Rev 53:57–90

    Google Scholar 

  3. Narang S, Bahel S (2010) Low loss dielectric ceramics for microwave applications: a review. J Ceram Process Res 11(3):316–321

    Google Scholar 

  4. Sebastian MT (2008) Dielectric materials for wireless communication. Elsevier, Amsterdam

    Google Scholar 

  5. Devesa S, Graça MP, Henry F, Costa L (2015) Microwave dielectric properties of (Bi1-xFex) NbO4 ceramics prepared by the sol–gel method. Ceram Int 41(6):8186–8190

    Google Scholar 

  6. Zhou D, Pang L, Wang H, Yao X (2009) Phase composition and phase transformation in Bi (Sb, Nb, Ta)O4 system. Solid State Sci 11:1894–1897

    Google Scholar 

  7. Wang N, Zhao M, Yin Z, Li W (2003) Low-temperature synthesis of β-BiNbO4 powder by citrate sol–gel method. Mater Lett 57:4009–4013

    Google Scholar 

  8. Devesa S, Graça MP, Costa L (2016) Structural, morphological and dielectric properties of BiNbO4 ceramics prepared by the sol-gel method. Mater Res Bull 78:128–133

    Google Scholar 

  9. Kagata H, Inoue T, Kato J, Kameyama I (1992) Low-fire bismuth-based dielectric ceramics for microwave use. Jpn J Appl Phys 31(9S):3152

    Google Scholar 

  10. Almeida J, Fernandes T, Sales A, Silva M, Júnior G, Rodrigues H, Sombra A (2011) Study of the structural and dielectric properties of Bi2O3 and PbO addition on BiNbO4 ceramic matrix for RF applications. J Mater Sci Mater Electron 22:978–987

    Google Scholar 

  11. Yang Y, Ding S, Yao X (2004) Influences of Fe2O3 additives on the dielectric properties of BiNbO4 ceramics under different sintering atmosphere. Ceram Int 30:1341–1345

    Article  Google Scholar 

  12. Shihua D, Xi Y, Yu M, Puling L (2006) Microwave dielectric properties of (Bi1-xFex)NbO4 ceramics (R= Ce, Nd, Dy, Er). J Eur Ceram Soc 26:2003–2005

    Article  Google Scholar 

  13. Wang N, Zhao M, Yin Z, Li W (2004) Effects of complex substitution of La and Nd for Bi on the microwave dielectric properties of BiNbO4 ceramics. Mater Res Bull 39:439–448

    Article  Google Scholar 

  14. Tzou W, Yang C, Chen Y, Cheng P (2002) Microwave dielectric characteristics of (Bi1-xSmx) NbO4 ceramics. Ceram Int 28:105–110

    Article  Google Scholar 

  15. Wang N, Zhao M, Yin Z (2003) Effects of Ta2O5 on microwave dielectric properties of BiNbO4 ceramics. Mater Sci Eng B 99(1):238–242

    Article  Google Scholar 

  16. Butee S, Kulkarni A, Prakash O, Aiyar R, Sudheendran K, Raju K (2010) Effect of lanthanide ion substitution on RF and microwave dielectric properties of BiNbO4 ceramics. J Alloys Compd 492:351–357

    Article  Google Scholar 

  17. Devesa S, Graça MP, Henry F, Costa LC (2017) Structural, morphological and microwave dielectric properties of (Bi1-xEux)NbO4 ceramics prepared by the sol-gel method. Int J Mater Eng Innov 8(1):12–26

    Article  Google Scholar 

  18. Parkash A, Vaid JK, Mansingh A (1979) Measurement of dielectric parameters at microwave frequencies by cavity-perturbation technique. IEEE Trans Microw Theory Tech 27(9):791–795

    Article  ADS  Google Scholar 

  19. Kim E, Choi W, Eur J (2006) Effect of phase transition on the microwave dielectric properties of BiNbO4. Ceram Soc 26:1761–1766

    Article  Google Scholar 

  20. Liou Y, Tsai W, Chen H (2009) Low-temperature synthesis of BiNbO4 ceramics using reaction-sintering process. Ceram Int 35:2119–2122

    Article  Google Scholar 

  21. Zhou D, Wang H, Yao X, Wei X, Xiang F, Pang L (2007) Phase transformation in BiNbO4 ceramics. Appl Phys Lett 90(17):2910

    Article  ADS  Google Scholar 

  22. Maruyama Y, Izawa C, Watanabe T (2012) Synthesis of by the Flux method. ISRN Mater Sci

    Google Scholar 

  23. Sales AJ, Oliveira P, Almeida J, Costa M, Rodrigues H, Sombra A (2012) Copper concentration effect in the dielectric properties of BiNbO4 for RF applications. J Alloys Compd 542:264–270

    Article  Google Scholar 

  24. Filho RC, Araújo JH, Ginani MF, d’Assunção AG, Martins RA (2010) Simulation and measurement of inset-fed microstrip patch antennas on BiNbO4 substrates. Microw Opt Technol Lett 52(5):1034–1036

    Article  Google Scholar 

  25. Radha R, Gupta UN, Samuel V, Muthurajan H, Kumar HH, Ravi V (2008) A co-precipitation technique to prepare BiNbO4 powders. Ceram Int 34(6):1565–1567

    Article  Google Scholar 

  26. Almeida CG, Andrade HMC, Mascarenhas AJS, Silva LA (2010) Synthesis of nanosized β-BiTaO4 by the polymeric precursor method. Mater Lett 64(9):1088–1090

    Article  Google Scholar 

  27. S. Devesa, Graça MP, Costa LC (2017) Recent applications in sol-gel synthesis. InTech

    Google Scholar 

  28. Costa LC, Aoujgal A, Graça MPF, Hadik N, Achour ME (2010) Microwave dielectric properties of the system Ba1-xSrxTiO3. Physica B 405(17):3741–3744

    Article  ADS  Google Scholar 

  29. Rubinger CPL, Costa LC (2007) Building a resonant cavity for the measurement of microwave dielectric permittivity of high loss materials. Microw Opt Technol Lett 49:1687–1690

    Article  Google Scholar 

  30. Costa LC, Devesa S, Henry F (2005) Microwave dielectric properties of polybutylene terephtalate (PBT) with carbon black particles. Microw Opt Technol Lett 46:61–63

    Article  Google Scholar 

  31. Silva CC, Gouveia DX, Graça MPF, Costa LC, Sombra ASB, Valente MA (2010) Study of the structural and dielectric properties of xLiFe5O8-(100− x) LiNbO3 composites, processed using microwave energy. J Non-Cryst Solids 356:602–606

    Article  ADS  Google Scholar 

  32. Devesa S, Graça MP, Henry F, Costa LC (2016) Dielectric properties of FeNbO4 ceramics prepared by the sol-gel method. Solid State Sci 61:44–50

    Article  ADS  Google Scholar 

  33. Lee CY, Macquart R, Zhou Q, Kennedy BJ (2003) Structural and spectroscopic studies of BiTa1-xNbxO. J Solid State Chem 174(2):310–318

    Article  ADS  Google Scholar 

  34. Muktha B, Darriet J, Madras G, Row T (2006) Crystal structures and photocatalysis of the triclinic polymorphs of BiNbO4 and BiTaO4. J Solid State Chem 179:3919–3925

    Article  ADS  Google Scholar 

  35. Schmidbauer E, Schneider J (1997) Electrical resistivity, thermopower, and 57Fe Mössbauer study of FeNb4. J Solid State Chem 134(2):253–264

    Article  ADS  Google Scholar 

  36. Radha R, Muthurajan H, Rao NK, Pradhan S, Gupta UN, Jha RK, Mirji SA, Ravi V (2008) Low temperature synthesis and characterization of BiNbO4 powders. Mater Charact 59(8):1083–1087

    Article  Google Scholar 

  37. Xu C, He D, Liu C, Wang H, Zhang L, Wang P, Yin S (2013) High pressure and high temperature study the phase transitions of BiNbO4. Solid State Commun 156:21–24

    Article  ADS  Google Scholar 

  38. Roth RS, Waring JL (1964) Ixiolite+ other polymorphic types of FeNbO4. Am Mineral 49:2242

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V., part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Devesa, S., Graça, M.P., Costa, L.C. (2018). Iron Concentration Effect on the Microwave Dielectric Properties of BiNbO4 Ceramics. In: Petkov, P., Tsiulyanu, D., Popov, C., Kulisch, W. (eds) Advanced Nanotechnologies for Detection and Defence against CBRN Agents. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1298-7_15

Download citation

Publish with us

Policies and ethics