Skip to main content

From Molecules to Crystals to Functional Form: Science of Scale

  • Chapter
  • First Online:
Engineering Crystallography: From Molecule to Crystal to Functional Form

Abstract

An understanding of the materials science of a new active pharmaceutical ingredient (API) is crucial at the interface of the chemical synthesis and drug product development. The selection of the crystallisation process and particle attributes during development is a key milestone in the conversion of a new API into a drug product. The physical and chemical properties of an API can impact product performance and process robustness and are strongly influenced by the solid state structure of the API. Product performance can only be assured when the API is delivered to the patient in a chemically and physically stable solid form. In this chapter we will attempt to integrate progress with cutting edge computational tools in academia to the best current industrial practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. DeCamp WH (2001) The impact of polymorphism on drug development: a regulator’s viewpoint. Am Pharm Rev 4:75–77

    Google Scholar 

  2. Byrn SR, Pfeiffer RR, Stowell JG (2002) Polymorphs, regulations, crystallization, and solid-state chemistry. Am Pharm Rev 5:96–99

    Google Scholar 

  3. Storey RA, Docherty R, Higginson PD (2003) Integration of high throughput screening methodologies and manual processes for solid form selection. Am Pharm Rev 6:104–105

    Google Scholar 

  4. Ticehurst M, Docherty R (2006) From molecules to pharmaceutical products – the drug substance/drug product interface. Am Pharm Rev 9:34–36

    Google Scholar 

  5. Sun CC (2009) Materials science tetrahedron – a useful tool for pharmaceutical research and development. J Pharm Sci 98:1671–1687

    Article  CAS  Google Scholar 

  6. Hancock BH, Elliot J (2006) Pharmaceutical materials sciences. MRS Bull 31:869–900

    Article  Google Scholar 

  7. Chow K, Tong HHY, Lum S, Chow AHL (2008) Engineering of pharmaceutical materials: an industrial perspective. J Pharm Sci 97:2855–2877

    Article  CAS  Google Scholar 

  8. Shekunov BY, Chattopadhyay P, Tong HHY, Chow AHL (2007) Particle size analysis in pharmaceutics: principles, methods and applications. Pharm Res 24:203–227

    Article  CAS  Google Scholar 

  9. Roberts KJ, Docherty R, Marshall A (2012) Cross-industry synthonic engineering workshop. Institute of Physics, London

    Google Scholar 

  10. Friedel MG (1907) Etudes sur la loi de Bravais. Bull Soc Franc Miner 9:326

    Google Scholar 

  11. Donnay JDH, Harker D (1937) A new law of crystal morphology extending the law of Bravais. Am Min 22:446–467

    CAS  Google Scholar 

  12. Hartman P, Perdok WG (1955) The relations between structure and morphology of crystals. II. Acta Crystallogr 8:521–524

    Article  CAS  Google Scholar 

  13. Berkovitch-Yellin Z (1985) Toward an ab initio derivation of crystal morphology. J Am Chem Soc 107:8239–8253

    Article  CAS  Google Scholar 

  14. Docherty R, Clydesdale G, Roberts KJ, Bennema P (1991) Application of Bravais-Friedel-Donnay-Harker attachment energy and Ising models to predicting and understanding the morphology of molecular crystals. J Phys D Appl Phys 24:89–99

    Article  CAS  Google Scholar 

  15. Black SN, Williams LJ, Davey RJ, Moffatt F, McEwan DM, Sadler DE, Docherty R, Williams DJ (1990) Crystal chemistry of 1-(4-chlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)pentan-3-one, a paclobutrazol intermediate. J Phys Chem 94:3223–3226

    Article  CAS  Google Scholar 

  16. Clydesdale G, Docherty R, Roberts KJ (1991) HABIT – a program for predicting the morphology of molecular crystals. Comput Phys Commun 64:311–328

    Article  CAS  Google Scholar 

  17. Hammond RB (2015) Modelling route map: from molecule through the solution state to crystals, chapter 6. In: Roberts KJ, Docherty R, Tamura T (eds) Engineering crystallography: from molecule to crystal to functional form. Springer Advanced Study Institute (ASI) series, 2017, in press

    Google Scholar 

  18. Yu W, Hancock BC (2008) Evaluation of dynamic image analysis for characterizing pharmaceutical excipient particles. Int J Pharm 361:150–157

    Article  CAS  Google Scholar 

  19. Gamble JF, Ferreira AP, Tobyn M, DiMemmo L, Martin K, Mathias N, Schild R, Vig B, Baumann JM, Parks S et al (2014) Application of imaging based tools for the characterisation of hollow spray dried amorphous dispersion particles. Int J Pharm 465:210–217

    Article  CAS  Google Scholar 

  20. Jones MD, Young PM, Traini D, Shur J, Edge S, Price R (2008) The use of atomic force microscopy to study the conditioning of micronised budesonide. Int J Pharm 357:314–317

    Article  CAS  Google Scholar 

  21. Ho R, Heng JYY (2013) A review of inverse gas chromatography and its development as a tool to characterize anisotropic surface properties of pharmaceutical solids. KONA Powder Part J 30:164–180

    Article  CAS  Google Scholar 

  22. Modi SR, Dantuluri AKR, Puri V, Pawar YB, Nandekar P, Sangamwar AT, Perumalla SR, Sun CC, Bansal AK (2013) Impact of crystal habit on biopharmaceutical performance of Celecoxib. Cryst Growth Des 13:2824–2832

    Article  CAS  Google Scholar 

  23. Yalkowsky SH, Bolton S (1990) Particle size and content uniformity. Pharm Res 7:962–966

    Article  CAS  Google Scholar 

  24. Mullarney MP, Leyva N (2009) Modeling pharmaceutical powder-flow performance using particle-size distribution data. Pharm Technol 33:126–134

    CAS  Google Scholar 

  25. Narayan P, Hancock BC (2003) The relationship between the particle properties, mechanical behaviour, and surface roughness of some pharmaceutical excipient compacts. Mat Sci Eng A A355:24–36

    Article  CAS  Google Scholar 

  26. Siepmann J, Siepmann F (2013) Mathematical models of drug dissolution. Int J Pharm 453:12–24

    Article  CAS  Google Scholar 

  27. Taylor L, Papadopoulos DG, Dunn PJ, Bentham AC, Dawson NJ, Mitchell JC, Snowden MJ (2004) Predictive milling of pharmaceutical materials using nanoindentation of single crystals. Org Process Res Dev 8:674–679

    Article  CAS  Google Scholar 

  28. Olusanmi D, Roberts KJ, Ghadiri M, Ding Y (2011) The breakage behaviour of Aspirin under quasi-static indentation and single particle impact loading: effect of crystallographic anisotropy. Int J Pharm 411:49–63

    Article  CAS  Google Scholar 

  29. Amidon GL, Lennernaes H, Shah VP, Crison JR (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12:413–420

    Article  CAS  Google Scholar 

  30. Martyn DT, Ivan M (2015) Integration of active pharmaceutical ingredient solid form selection and particle engineering into drug product design. J Pharm Pharmacol 67:782–802

    Article  Google Scholar 

  31. Butler JM, Dressman JB (2010) The developability classification system: application of biopharmaceutics concepts to formulation development. J Pharm Sci 99:4940–4954

    Article  CAS  Google Scholar 

  32. Leane M, Pitt K, Reynolds G (2015) A proposal for a drug product manufacturing classification system (MCS) for oral solid dosage forms. Pharm Dev Technol 20:12–21

    Article  CAS  Google Scholar 

  33. Hammond RB, Pencheva K, Roberts KJ (2007) Molecular modeling of crystal-crystal interactions between the α- and β- polymorphic forms of L-glutamic acid using grid-based methods. Cryst Growth Des 7:875–884

    Article  CAS  Google Scholar 

  34. Ramachandran V, Roberts KJ, Docherty R, Synthonic engineering: particle passport and its impact on functional form (unpublished work)

    Google Scholar 

  35. Weissbuh I, Leiserowitz L, Lahav M (1995) “Tailor-Made Additives” and impurities. In: Mersmann A (ed) Crystallizaion technology handbook. Marcel Dekker, New York

    Google Scholar 

  36. Hammond RB, Pencheva K, Roberts KJ (2006) A structural-kinetic approach to model face-specific solution/crystal surface energy associated with the crystallization of acetyl salicylic acid from supersaturated aqueous/ethanol solution. Cryst Growth Des 6:1324–1334

    Article  CAS  Google Scholar 

  37. Hammond RB, Pencheva K, Roberts KJ, Auffret T (2007) Quantifying solubility enhancement due to particle size reduction and crystal habit modification: case study of acetyl salicylic acid. J Pharm Sci 96:1967–1973

    Article  CAS  Google Scholar 

  38. Hammond RB, Jeck S, Ma CY, Pencheva K, Roberts KJ, Auffret T (2009) An examination of binding motifs associated with inter-particle interactions between nano-crystals of acetylsalicylic acid and ascorbic acid through the application of molecular grid-based search methods. J Pharm Sci 98:4589–4602

    Article  CAS  Google Scholar 

  39. Roberts KJ, Hammond RB, Ramachandran V, Docherty R (2016) Synthonic engineering: from molecular and crystallographic structure to the rational design of pharmaceutical solid dosage forms. In: Abramov YA (ed) Computational approaches in pharmaceutical solid state chemistry. Wiley, Chichester

    Google Scholar 

  40. Ramachandran V, Murnane D, Hammond RB, Pickering J, Roberts KJ, Soufian M, Forbes B, Jaffari S, Martin G, Collins E, Pencheva K (2015) Formulation pre-screening of inhalation powders using computational atom-atom systematic search method. Mol Pharm 12:18–33

    Article  CAS  Google Scholar 

  41. Jaffari S, Forbes B, Collins E, Barlow DJ, Martin GP, Murnane D (2013) Rapid characterisation of the inherent dispersibility of respirable powders using dry dispersion laser diffraction. Int J Pharm 447:124–131

    Article  CAS  Google Scholar 

  42. Noyes A, Whitney WR (1897) The rate of solution of solid substances in their own solutions. J Am Chem Soc 19:930–934

    Article  Google Scholar 

  43. Krzyzaniak JF, Meenan PA, Docherty CL, Pencheva K, Luthra S, Cruz-Cabeza A (2016) Integrating computational materials science tools in form and formulation design. In: Abramov YA (ed) Computational approaches in pharmaceutical solid state chemistry. Wiley, New York

    Google Scholar 

  44. Gao Y, Olsen KW (2013) Molecular dynamics of drug crystal dissolution: simulation of acetaminophen form I in water. Mol Pharm 10:905–917

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radoslav Y. Penchev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Docherty, R., O’Connor, G., Penchev, R.Y., Pickering, J., Ramachandran, V. (2017). From Molecules to Crystals to Functional Form: Science of Scale. In: Roberts, K., Docherty, R., Tamura, R. (eds) Engineering Crystallography: From Molecule to Crystal to Functional Form. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1117-1_29

Download citation

Publish with us

Policies and ethics