Skip to main content

Fundamental Principles for Sensing Measuring Devices Used for the Detection of Chemical Warfare Agents

  • Conference paper
  • First Online:
Molecular Technologies for Detection of Chemical and Biological Agents

Abstract

This chapter surveys the current detection technologies used in commercially available sensor detection equipment currently employed for identifying warfare chemical agents (CAs). Brief technical descriptions of these technologies are presented with emphasis placed on the principles of detection. Much of the content presented was obtained from the open-source literature and is an introduction to biosensor fundamentals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Report of the OPCW on the implementation of the convention on the prohibition of the development, production, stockpiling and use of chemical weapons and on their destruction (2015) Conference of the States Parties Organisation for the Prohibition of Chemical Weapons. CS-2015-9540(E)

    Google Scholar 

  2. https://www.britannica.com/event/London-bombings-of-2005

  3. Okumura T, Takasu N, Lshimatsu S, Minyanoki S, Mitsuhashi A, Kumada K, Tanaka K, Hinohara S (1996) Report on 640 victims of the Tokyo subway Sarin attack. Ann Energ Med 28:129–135

    Article  CAS  Google Scholar 

  4. Banoub J (ed) (2014) Detection of chemical, biological, radiological and nuclear agents for the prevention of terrorism. Mass spectrometry and allied topics. IOS Press, Amsterdam and Springer, Dordrecht, in conjunction with the NATO Emerging Security Challenges Division, p 1–291

    Google Scholar 

  5. Hoenig SL (2007) Compendium of chemical warfare agents. Springer, New York

    Google Scholar 

  6. OPCW (2000) Fact sheet 4 what is a chemical weapon? OPCW, Hague

    Google Scholar 

  7. Borowitz JL, Kanthasamy AG, Isom GE (1992) Toxicodynamics of cyanide. In: Somani SM (ed) Chemical warfare agents. Academic Press, San Diego, pp 209–236

    Google Scholar 

  8. López-Muñoz F, Alamo C, Guerra JA, García-García P (2008) The development of neurotoxic agents as chemical weapons during the National Socialist period in Germany. Rev Neurol 47:99–106

    Google Scholar 

  9. Sidell FR, Borak J (1992) Chemical warfare agents: II. Nerve agents. Ann Emerg Med 21:865–871

    Article  CAS  Google Scholar 

  10. Bajgar J (2004) Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment. Adv Clin Chem 38:151–216

    Article  CAS  Google Scholar 

  11. Guide for the Selection of Chemical Agent and Toxic Industrial Material Detection Equipment for Emergency First Responders (2005) Volume I and II: Summary, p. 100–104

    Google Scholar 

  12. Walsh CJ (2008) Blood agents. In: Embar-Seddon A, Allan D, Pass AD (eds) Forensic science. Salem Press, Pasadena, p 150

    Google Scholar 

  13. Stuart JA, Ursano RJ, Fullerton CS, Norwood AE, Murray K (2003) Belief in exposure to terrorist agents: reported exposure to nerve or mustard gas by gulf war veterans. J Nerv Ment Dis 191:431–436

    Article  Google Scholar 

  14. Pechura CM, Rall DP (1993) Chapter 3: history and analysis of mustard agent and lewisite research programs in the United States. In: Veterans at risk: the health effects of mustard gas and lewisite. National Academies Press, Washington, DC

    Google Scholar 

  15. Le HQ, Knudsen SJ (2006) Exposure to a First World War blistering agent. Emerg Med J 23:296–299

    Article  CAS  Google Scholar 

  16. https://www.opcw.org/about-chemical-weapons/types-of-chemical-agent/psychotomimetic-agents/

  17. Ketchum JS, Salem H (2008) In Incapacitating Agents, Medical Aspects of Chemical Warfare Tuorinsky SD (ed), pp 411–440

    Google Scholar 

  18. Olajos EJ (2004) Riot control agents issues in toxicology, safety, and health. CRC Press, Boca Raton/London/New York/Washington, DC, p 353

    Book  Google Scholar 

  19. Norige A, Thorton J, Schiefelbein C, Rudzinski C (2009) High-density distributed sensing for chemical and biological defense. Lincoln Lab J 18:27–40

    Google Scholar 

  20. Carrano J (2007) Chemical and biological sensor standards study, Technical report, Defense Advanced Research Projects Agency, Arlington, VA, August 2007

    Google Scholar 

  21. Braden CG, Greg EC (2007) Synthetic methods applied to the detection of chemical warfare nerve agents. Curr Org Chem 11:255–265

    Article  Google Scholar 

  22. Sferopoulos RA (2009) Review of Chemical Warfare Agent (CWA) Detector Technologies and Commercial-Off-The-Shelf Items. DSTO-GD-0570, Human Protection and Performance Division DSTO Defence Science and Technology Organisation, Victoria 3207 Australia, p 90

    Google Scholar 

  23. Duffy LM, Downing E, Huey BM, Mckone TM (2000) National Research Council, Commission on Life Sciences, Commission on Engineering and Technical Systems, Division of Military Science and Technology and Board on Environmental Studies and Toxicology, National Academies Press, p 272

    Google Scholar 

  24. Cripping JB (ed) (2005) Explosives and chemical weapons identification, Forensic science techniques series. CRC Press/Francis and Taylor, Boca Raton, p 288

    Google Scholar 

  25. Amani M, Chu Y, Waterman KL, Hurley CM, Platek MJ, Gregory OJ (2012) Detection of Triacetone Triperoxide (TATP) using a thermodynamic based gas sensor. Sens Actuators B Chem 162:7–13

    Article  CAS  Google Scholar 

  26. http://news.nationalpost.com/news/world/mother-of-satan-the-highly-unstable-bomb-of-choice-for-terrorists-likely-used-in-brussels-attacks

  27. http://namrataheda.blogspot.fr/2016/05/spectrophotometry-flame-photometry.html

  28. Sun Y, Ong KY (2005) Detection technologies for chemical warfare agents and toxic vapors, 1st edn. CRC Press, Boca Raton/Florida, p 272

    Google Scholar 

  29. Budzier H, Gerlach G (2011) Thermal infrared sensors: theory, optimisation and practice. Wiley, Hoboken, p 324

    Book  Google Scholar 

  30. Davis G. CBRNE – Chemical Detection Equipment. http://www.emedicine.com/emerg/topic924.htm

  31. Luma Sense. Available online: www.lumasense.dk/INNOVA-1412.gas_monitoring4.0.html/

  32. Photoacoustic Detection (PAS) In: Innova, vol 2007

    Google Scholar 

  33. Seeley JA, Richardson JM (2007) Early warning chemical sensors. Lincoln Lab J 17:85–99

    Google Scholar 

  34. http://www.darkgovernment.com/news/flir-forward-looking-infrared/flir-2-soldiers/

  35. Gardiner DJ (1989) Practical Raman spectroscopy. Springer, Berlin

    Book  Google Scholar 

  36. Lombardi JR, Birke RL (2008) A unified approach to surface-enhanced Raman spectroscopy. J Phys Chem C 112:5605–5617

    Article  CAS  Google Scholar 

  37. Robinson R (2015) The Application of Differential Absorption Lidar (DIAL) for Pollutant Emissions Monitoring, Environmental Measurements Group – Analytical Science Division National Physical Laboratory Teddington, http://www.npl.co.uk/environment

  38. Mudaliar S (2013) Remote sensing of layered random media using the radiative transfer theory. Radio Sci 48:535–546

    Article  Google Scholar 

  39. Kotidis P, Deutsch E, Goyal A. Standoff detection of chemical and biological threats. Defense & security: http://spie.org/newsroom/5844-standoff-detection-of-chemical-and-biological-threats

  40. Kano AB, Dwivedi P, Tam M, Matz L, Hill HH Jr (2008) Ion mobility-mass spectrometry. J Mass Spectrom 43:1–22

    Article  Google Scholar 

  41. Eiceman GA, Karpas Z, Hill HH Jr (2013) Ion mobility spectrometry third edition. CRC Press/Francis and Taylor, p 444

    Google Scholar 

  42. Smith J (2015) Brodie’s Bombs and Bombings A Handbook to Protection, Disposal and Investigation for Industry, Police and Fire Departments Fourth Edition, Charles C Thomas Publisher LTD, p 297

    Google Scholar 

  43. Zolotov YA (2006) Ion mobility spectrometry. J Anal Chem 61:519

    Article  CAS  Google Scholar 

  44. Srebalus CA, Li JW, Marshal WS, Clemmer DE (1999) Gas-phase separations of electrosprayed peptide libraries. Anal Chem 71:3918–3927

    Article  CAS  Google Scholar 

  45. Trimpin S, Plasencia MD, Isailovic D, Clemmer DE (2007) Resolving oligomers from fully grown polymers with IMS-MS. Anal Chem 79:7974

    Google Scholar 

  46. Zhang W, Quernheim M, Joachim Räder M, Müllen K (2016) Collision-induced dissociation ion mobility mass spectrometry for the elucidation of unknown structures in strained polycyclic aromatic hydrocarbon macrocycles. Anal Chem 88:952–959

    Article  CAS  Google Scholar 

  47. (a) Buryakov IA (2011) Detection of explosives by Ion mobility spectrometry. J Anal Chem 66:674 (b) Puton J, Namiesnik J (2016) Ion mobility spectrometry: current status and application for chemical warfare agents detection. Trends Anal Chem 85:10–20

    Google Scholar 

  48. Hill HH, Simpson G (1999) Capabilities and limitations of ion mobility spectrometry for field screening applications. Field Anal Chem Technol 13:119–134

    Google Scholar 

  49. Smith DP, Knapman TW, Campuzano I, Malham RW, Berryman JT, Radford SE, Ashcroft AE (2009) Deciphering drift time measurements from travelling wave ion mobility spectrometry-mass spectrometry studies. Eur J Mass Spectrom (Chichester) 15:113–130

    Article  CAS  Google Scholar 

  50. Hsi P, Sheikham B, Negre T, Mulhem M, Stohecker J (2103) The PID handbook-theory and applications of direct-reading photoionization detectirs, 3rd ed. RAE Systems by Honeywell, RAE Systems Inc, San Jose. www.raesystems.com

  51. http://www.geo.uni-tuebingen.de/studium/studentische-projekte/wiss-praesentieren-ss2012/applied-environmental-geoscience/yu-ye.html

  52. Smith PA, Lepage JC, Harrer KL, Brochu PJ (2007) Handheld photoionization instruments for quantitative detection of Sarin vapor and for rapid qualitative screening of contaminated objects. J Occ Env Hyg 4:729–738

    Article  CAS  Google Scholar 

  53. Dräger Tube Sets: Simultaneous Test Sets. In Dräger safety

    Google Scholar 

  54. Zrodnikov Y, Davis CE (2012) The highs and lows of FAIMS: predictions and future trends for high field asymmetric waveform ion mobility spectrometry. J Nanomed Nanotechol 3:5

    Article  Google Scholar 

  55. Buryakov IA, Krylov EV, Nazarov EG, Rasulev UK (1993) A new method of separation of multi-atomic ions by mobility at atmospheric-pressure using a high-frequency amplitude-asymmetric strong electric field. Int J Mass Spectrom Ion Process 128:143–148

    Article  CAS  Google Scholar 

  56. Daum KA, Watrous MG, Neptune MD, Michael DI, Hull KJ, Evans JD (2006) Data for frist responder use of photoionization detectors for vapor chemical constituents. INL Idaho National Laboratory, SAIC, pp 78

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph H. Banoub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this paper

Cite this paper

Jahouh, F., Banoub, J.H. (2017). Fundamental Principles for Sensing Measuring Devices Used for the Detection of Chemical Warfare Agents. In: Banoub, J., Caprioli, R. (eds) Molecular Technologies for Detection of Chemical and Biological Agents. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1113-3_3

Download citation

Publish with us

Policies and ethics