Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 976))

Abstract

Accumulating evidence suggest that TRPC channels play critical roles in various aspects of epileptogenesis. TRPC1/4 channels are major contributors to nonsynaptically derived epileptiform burst firing in the CA1 and the lateral septum. TRPC7 channels play a critical role in synaptically derived epileptiform burst firing. The reduction of spontaneous epileptiform bursting in the CA3 is correlated to a reduction in pilocarpine-induced SE in vivo in TRPC7 knockout mice. TRPC channels are also significant contributors to SE-induced neuronal cell death. Although the pilocarpine-induced SE itself is not significantly reduced, the SE-induced neuronal cell death is significantly reduced in the CA1 and the lateral septum, indicating that TRPC1/4 channels directly contribute to SE-induced neuronal cell death. Genetic ablation of TRPC5 also reduces SE-induced neuronal cell death in the CA1 and CA3 areas of the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amaral MD, Pozzo-Miller L (2007) TRPC3 channels are necessary for brain-derived neurotrophic factor to activate a nonselective cationic current and to induce dendritic spine formation. J Neurosci 27:5179–5189. doi:10.1523/JNEUROSCI.5499-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anderson WW, Swartzwelder HS, Wilson WA (1987) The NMDA receptor antagonist 2-amino-5-phosphonovalerate blocks stimulus train-induced epileptogenesis but not epileptiform bursting in the rat hippocampal slice. J Neurophysiol 57:1–21

    CAS  PubMed  Google Scholar 

  3. Astori S, Wimmer RD, Prosser HM, Corti C, Corsi M, Liaudet N, Volterra A, Franken P, Adelman JP, Lüthi A (2011) The Ca(V)3.3 calcium channel is the major sleep spindle pacemaker in thalamus. Proc Natl Acad Sci U S A 108:13823–13828. doi:10.1073/pnas.1105115108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ayala GF, Dichter M, Gumnit RJ, Matsumoto H, Spencer WA (1973) Genesis of epileptic interictal spikes. New knowledge of cortical feedback systems suggests a neurophysiological explanation of brief paroxysms. Brain Res 52:1–17. doi:10.1016/0006-8993(73)90647-1

    Article  CAS  PubMed  Google Scholar 

  5. Bains JS, Longacher JM, Staley KJ (1999) Reciprocal interactions between CA3 network activity and strength of recurrent collateral synapses. Nat Neurosci 2:720–726. doi:10.1038/11184

    Article  CAS  PubMed  Google Scholar 

  6. Bear J, Lothman EW (1993) An in vitro study of focal epileptogenesis in combined hippocampal-parahippocampal slices. Epilepsy Res 14:183–193

    Article  CAS  PubMed  Google Scholar 

  7. Becker AJ, Pitsch J, Sochivko D, Opitz T, Staniek M, Chen C-C, Campbell KP, Schoch S, Yaari Y, Beck H (2008) Transcriptional upregulation of Cav3.2 mediates epileptogenesis in the pilocarpine model of epilepsy. J Neurosci 28:13341–13353. doi:10.1523/JNEUROSCI.1421-08.2008

    Article  CAS  PubMed  Google Scholar 

  8. Borges K, McDermott DL, Dingledine R (2004) Reciprocal changes of CD44 and GAP-43 expression in the dentate gyrus inner molecular layer after status epilepticus in mice. Exp Neurol 188:1–10. doi:10.1016/j.expneurol.2004.03.019

    Article  CAS  PubMed  Google Scholar 

  9. Cai S-Q, Li W, Sesti F (2007) Multiple modes of a-type potassium current regulation. Curr Pharm Des 13:3178–3184

    Article  CAS  PubMed  Google Scholar 

  10. Cavalheiro EA, Santos NF, Priel MR (1996) The pilocarpine model of epilepsy in mice. Epilepsia 37:1015–1019

    Article  CAS  PubMed  Google Scholar 

  11. Chuang SC, Bianchi R, Kim D, Shin HS, Wong RK (2001) Group I metabotropic glutamate receptors elicit epileptiform discharges in the hippocampus through PLCbeta1 signaling. J Neurosci 21:6387–6394

    CAS  PubMed  Google Scholar 

  12. Connor JA (1978) Slow repetitive activity from fast conductance changes in neurons. Fed Proc 37:2139–2145

    CAS  PubMed  Google Scholar 

  13. Csicsvari J, Jamieson B, Wise KD, Buzsáki G (2003) Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37:311–322. doi:10.1016/S0896-6273(02)01169-8

    Article  CAS  PubMed  Google Scholar 

  14. de Boer HM, Mula M, Sander JW (2008) The global burden and stigma of epilepsy. Epilepsy Behav 12:540–546. doi:10.1016/j.yebeh.2007.12.019

    Article  PubMed  Google Scholar 

  15. Dingledine R, Hynes MA, King GL (1986) Involvement of N-methyl-D-aspartate receptors in epileptiform bursting in the rat hippocampal slice. J Physiol 380:175–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fisher RS, Scharfman HE, DeCurtis M (2014) How can we identify ictal and interictal abnormal activity? Adv Exp Med Biol 813:3–23. doi:10.1007/978-94-017-8914-1_1

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fisher RS, Van Emde Boas W, Blume W, Elger C, Genton P, Lee P, Engel J (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46:470–472. doi:10.1111/j.0013-9580.2005.66104.x

    Article  PubMed  Google Scholar 

  18. Gallagher JP, Zheng F, Hasuo H, Shinnick-Gallagher P (1995) Activities of neurons within the rat dorsolateral septal nucleus (DLSN). Prog Neurobiol 45:373–395

    Article  CAS  PubMed  Google Scholar 

  19. George AL (2004) Inherited channelopathies associated with epilepsy. Epilepsy Curr 4:65–70. doi:10.1111/j.1535-7597.2004.42010.x

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gibbs FA, Davis H, Lennox WG (1935) The electro-encephalogram in epilepsy and in conditions of impaired consciousness. Arch Neurol Psychiatr 34:1131–1148

    Article  Google Scholar 

  21. Gu N, Vervaeke K, Hu H, Storm JF (2005) Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells. J Physiol 566:689–715. doi:10.1113/jphysiol.2005.086835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hernandez CC, Zaika O, Tolstykh GP, Shapiro MS (2008) Regulation of neural KCNQ channels: signalling pathways, structural motifs and functional implications. J Physiol 586:1811–1821. doi:10.1113/jphysiol.2007.148304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hesdorffer DC, Logroscino G, Benn EKT, Katri N, Cascino G, Hauser WA (2011) Estimating risk for developing epilepsy: a population-based study in Rochester, Minnesota. Neurology 76:23–27. doi:10.1212/WNL.0b013e318204a36a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R (2007) How common are the “common” neurologic disorders? Neurology 68:326–337. doi:10.1212/01.wnl.0000252807.38124.a3

    Article  CAS  PubMed  Google Scholar 

  25. Jackson J (1958) Volume one: on epilepsy and epileptiform convulsions. In: Taylor J (ed) Selected writings of John Hughlings Jackson. Basic Books, New York, pp 1–486

    Google Scholar 

  26. Johnston D, Brown TH (1981) Giant synaptic potential hypothesis for epileptiform activity. Science 211:294–297

    Article  CAS  PubMed  Google Scholar 

  27. Jung S, Jones TD, Lugo JN, Sheerin AH, Miller JW, D’Ambrosio R, Anderson AE, Poolos NP (2007) Progressive dendritic HCN channelopathy during epileptogenesis in the rat pilocarpine model of epilepsy. J Neurosci 27:13012–13021. doi:10.1523/JNEUROSCI.3605-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kandel ER, Spencer WA (1961) Electrophysiology of hippocampal neurons. II. After-potentials and repetitive firing. J Neurophysiol 24:243–259

    CAS  PubMed  Google Scholar 

  29. Kim D-S, Ryu HJ, Kim J-E, Kang T-C (2013) The reverse roles of transient receptor potential canonical channel-3 and -6 in neuronal death following pilocarpine-induced status epilepticus. Cell Mol Neurobiol 33:99–109. doi:10.1007/s10571-012-9875-6

    Article  CAS  PubMed  Google Scholar 

  30. Matsumoto H, Marsan CA (1964) Cortical cellular phenomena in experimental epilepsy: interictal manifestations. Exp Neurol 9:286–304. doi:10.1016/0014-4886(64)90025-1

    Article  CAS  PubMed  Google Scholar 

  31. Matsumoto H, Marsan CA (1964) Cortical cellular phenomena in experimental epilepsy: ictal manifestations. Exp Neurol 9:305–326. doi:10.1016/0014-4886(64)90026-3

    Article  CAS  PubMed  Google Scholar 

  32. Mazzuferi M, Kumar G, Rospo C, Kaminski RM (2012) Rapid epileptogenesis in the mouse pilocarpine model: video-EEG, pharmacokinetic and histopathological characterization. Exp Neurol 238:156–167. doi:10.1016/j.expneurol.2012.08.022

    Article  CAS  PubMed  Google Scholar 

  33. McCormick DA, Contreras D (2001) On the cellular and network bases of epileptic seizures. Annu Rev Physiol 63:815–846. doi:10.1146/annurev.physiol.63.1.815

    Article  CAS  PubMed  Google Scholar 

  34. McNamara JO (1999) Emerging insights into the genesis of epilepsy. Nature 399:A15–A22. doi:10.1038/399a015

    Article  CAS  PubMed  Google Scholar 

  35. McNamara JO, Byrne MC, Dasheiff RM, Fitz JG (1980) The kindling model of epilepsy: a review. Prog Neurobiol 15:139–159. doi:10.1016/0301-0082(80)90006-4

    Article  CAS  PubMed  Google Scholar 

  36. Morimoto K, Fahnestock M, Racine RJ (2004) Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 73:1–60. doi:10.1016/j.pneurobio.2004.03.009

    Article  CAS  PubMed  Google Scholar 

  37. Müller CJ, Gröticke I, Hoffmann K, Schughart K, Löscher W (2009) Differences in sensitivity to the convulsant pilocarpine in substrains and sublines of C57BL/6 mice. Genes Brain Behav 8:481–492. doi:10.1111/j.1601-183X.2009.00490.x

    Article  PubMed  Google Scholar 

  38. Nagamine K, Kudoh J, Minoshima S, Kawasaki K, Asakawa S, Ito F, Shimizu N (1998) Molecular cloning of a novel putative Ca2+channel protein (TRPC7) highly expressed in brain. Genomics 54:124–131. doi:10.1006/geno.1998.5551

    Article  CAS  PubMed  Google Scholar 

  39. Nagao T, Alonso A, Avoli M (1996) Epileptiform activity induced by pilocarpine in the rat hippocampal-entorhinal slice preparation. Neuroscience 72:399–408. doi:10.1016/0306-4522(95)00534-X

    Article  CAS  PubMed  Google Scholar 

  40. Phelan KD, Mock MM, Kretz O, Shwe UT, Kozhemyakin M, Greenfield LJ, Dietrich A, Birnbaumer L, Freichel M, Flockerzi V, Zheng F (2012) Heteromeric canonical transient receptor potential 1 and 4 channels play a critical role in epileptiform burst firing and seizure-induced neurodegeneration. Mol Pharmacol 81:384–392. doi:10.1124/mol.111.075341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Phelan KD, Shwe UT, Abramowitz J, Birnbaumer L, Zheng F (2014) Critical role of canonical transient receptor potential channel 7 in initiation of seizures. Proc Natl Acad Sci U S A 111:11533–11538. doi:10.1073/pnas.1411442111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Phelan KD, Shwe UT, Abramowitz J, Wu H, Rhee SW, Howell MD, Gottschall PE, Freichel M, Flockerzi V, Birnbaumer L, Zheng F (2013) Canonical transient receptor channel 5 (TRPC5) and TRPC1/4 contribute to seizure and excitotoxicity by distinct cellular mechanisms. Mol Pharmacol 83:429–438. doi:10.1124/mol.112.082271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Phelan KD, Shwe UT, Williams DK, Greenfield LJ, Zheng F (2015) Pilocarpine-induced status epilepticus in mice: a comparison of spectral analysis of electroencephalogram and behavioral grading using the Racine scale. Epilepsy Res 117:90–96. doi:10.1016/j.eplepsyres.2015.09.008

    Article  PubMed  PubMed Central  Google Scholar 

  44. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294

    Article  CAS  PubMed  Google Scholar 

  45. Raggenbass M, Pierson P, Metzger D, Alberi S (1997) Action of a metabotropic glutamate receptor agonist in rat lateral septum: induction of a sodium-dependent inward aftercurrent. Brain Res 776:75–87. doi:10.1016/S0006-8993(97)00945-1

    Article  CAS  PubMed  Google Scholar 

  46. Reid CA, Berkovic SF, Petrou S (2009) Mechanisms of human inherited epilepsies. Prog Neurobiol 87:41–57. doi:10.1016/j.pneurobio.2008.09.016

    Article  CAS  PubMed  Google Scholar 

  47. Scharfman HE (1992) Differentiation of rat dentate neurons by morphology and electrophysiology in hippocampal slices: granule cells, spiny hilar cells and aspiny “fast-spiking” cells. Epilepsy Res Suppl 7:93–109

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Stoop R, Conquet F, Zuber B, Voronin LL, Pralong E (2003) Activation of metabotropic glutamate 5 and NMDA receptors underlies the induction of persistent bursting and associated long-lasting changes in CA3 recurrent connections. J Neurosci 23:5634–5644

    CAS  PubMed  Google Scholar 

  49. Tai C, Hines DJ, Choi HB, MacVicar BA (2011) Plasma membrane insertion of TRPC5 channels contributes to the cholinergic plateau potential in hippocampal CA1 pyramidal neurons. Hippocampus 21:958–967. doi:10.1002/hipo.20807

    CAS  PubMed  Google Scholar 

  50. Traub RD, Wong RK (1982) Cellular mechanism of neuronal synchronization in epilepsy. Science 216:745–747. doi:10.1126/science.7079735

    Article  CAS  PubMed  Google Scholar 

  51. Traynelis SF, Dingledine R (1988) Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J Neurophysiol 59:259–276

    CAS  PubMed  Google Scholar 

  52. Treiman DM, Walton NY, Kendrick C (1990) A progressive sequence of electroencephalographic changes during generalized convulsive status epilepticus. Epilepsy Res 5:49–60. doi:10.1016/0920-1211(90)90065-4

    Article  CAS  PubMed  Google Scholar 

  53. Turski L, Ikonomidou C, Turski WA, Bortolotto ZA, Cavalheiro EA (1989) Review: cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy. Synapse 3:154–171. doi:10.1002/syn.890030207

    Article  CAS  PubMed  Google Scholar 

  54. Turski WA, Cavalheiro EA, Bortolotto ZA, Mello LM, Schwarz M, Turski L (1984) Seizures produced by pilocarpine in mice: a behavioral, electroencephalographic and morphological analysis. Brain Res 321:237–253

    Article  CAS  PubMed  Google Scholar 

  55. Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP (2012) hERG K(+) channels: structure, function, and clinical significance. Physiol Rev 92:1393–1478

    Article  CAS  PubMed  Google Scholar 

  56. Wilson JV, Reynolds EH (1990) Texts and documents. Translation and analysis of a cuneiform text forming part of a Babylonian treatise on epilepsy. Med Hist 34:185–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xu G-Z, Shu H, Yue H-Y, Zheng D-H, Guo W, Yang H (2015) Increased expression of TRPC5 in cortical lesions of the focal cortical dysplasia. J Mol Neurosci 55:561–569. doi:10.1007/s12031-014-0390-8

    Article  CAS  PubMed  Google Scholar 

  58. Yan H-D, Villalobos C, Andrade R (2009) TRPC channels mediate a muscarinic receptor-induced afterdepolarization in cerebral cortex. J Neurosci 29:10038–10046. doi:10.1523/JNEUROSCI.1042-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zablocka B, Esplin DW (1963) Central excitatory and depressant effects of pilocarpine in rats and mice. J Pharmacol Exp Ther 140:162–169

    CAS  PubMed  Google Scholar 

  60. Zeng C, Zhou P, Jiang T, Yuan C, Ma Y, Feng L, Liu R, Tang W, Long X, Xiao B, Tian F (2015) Upregulation and diverse roles of TRPC3 and TRPC6 in synaptic reorganization of the mossy fiber pathway in temporal lobe epilepsy. Mol Neurobiol 52:562–572. doi:10.1007/s12035-014-8871-x

    Article  CAS  PubMed  Google Scholar 

  61. Zheng F, Gallagher JP (1991) Trans-ACPD (trans-D,L-1-amino-1,3-cyclopentanedicarboxylic acid) elicited oscillation of membrane potentials in rat dorsolateral septal nucleus neurons recorded intracellularly in vitro. Neurosci Lett 125:147–150. doi:10.1016/0304-3940(91)90013-J

    Article  CAS  PubMed  Google Scholar 

  62. Zheng F, Gallagher JP (1992) Burst firing of rat septal neurons induced by 1S,3R-ACPD requires influx of extracellular calcium. Eur J Pharmacol 211:281–282. doi:10.1016/0014-2999(92)90542-C

    Article  CAS  PubMed  Google Scholar 

  63. Zheng F, Gallagher JP, Connor JA (1996) Activation of a metabotropic excitatory amino acid receptor potentiates spike-driven calcium increases in neurons of the dorsolateral septum. J Neurosci 16:6079–6088

    CAS  PubMed  Google Scholar 

  64. Zheng F, Phelan KD (2014) The role of canonical transient receptor potential channels in seizure and excitotoxicity. Cells 3:288–303. doi:10.3390/cells3020288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhou F-W, Roper SN (2014) TRPC3 mediates hyperexcitability and epileptiform activity in immature cortex and experimental cortical dysplasia. J Neurophysiol 111:1227–1237. doi:10.1152/jn.00607.2013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported in part by NINDS (NS050381), by NIGMS (GM103425), by the Fund to Cure Stroke Foundation, and by the University of Arkansas for Medical Sciences College of Medicine Pilot Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zheng, F. (2017). TRPC Channels and Epilepsy. In: Wang, Y. (eds) Transient Receptor Potential Canonical Channels and Brain Diseases. Advances in Experimental Medicine and Biology, vol 976. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1088-4_11

Download citation

Publish with us

Policies and ethics