Skip to main content

Protective Effect of Taurine on Mice with Doxorubicin-induced Acute Kidney Injury

  • Conference paper
Taurine 10

Abstract

Nephrotic syndrome is still a therapeutic challenge because an effective treatment has not been developed. Evidence suggests that multidrug therapy is more effective than monotherapy in amelioration of renal injury. Therefore, we examined if taurine exerts a protective effect on doxorubicin-induced acute kidney injury in mice. Eight-week-old male Balb/c nude mice were used in this study. Taurine was orally administered at a dose of 50 mg/kg and 100 mg/kg body weight for 5 days. In the meantime, the mice were administered intraperitoneal injections of doxorubicin at 15 mg/kg body weight. At 24 h after the doxorubicin challenge, the response in the taurine-treated mice was compared with that in the vehicle-treated control mice. The doxorubicin-induced acute kidney injury model displayed a significant increase in the renal expression of apoptosis-related proteins (p53, phospho-p53, caspase 9, and caspase 3), whereas in the taurine-treated mice, the augmented expression of renal inflammation-related mRNAs such as NF-kB, COX-2, and iNOS was down-regulated. These results suggest that taurine acts as a renoprotective agent by inhibiting apoptosis and inflammation in the kidney of mice with doxorubicin-induced renal injury.

$These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

COX-2:

Cyclooxygenase-2

iNOS:

Inducible nitric oxide synthase

NF-κB:

Nuclear factor kappa-B

References

  • Abbas EK (2011) Histopathological changes caused by doxorubicin in laboratory mice (Mus musculus L). J Park Med Assoc 61:1108–1110

    Google Scholar 

  • Adedara IA, Ojuade TJ, Olabiyi BF, Idris UF, Onibiyo EM, Ajeigbe OF, Farombi EO (2017) Taurine ameliorates renal oxidative damage and thyroid dysfunction in rats chronically exposed to fluoride. Biol Trace Elem Res 175(2):388–395

    Article  CAS  PubMed  Google Scholar 

  • Akira S, Kishimoto T (1996) Role of interleukin-6 in macrophage function. Curr Opin Hematol 3:87–93

    Article  CAS  PubMed  Google Scholar 

  • Ayla S, Seckin I, Tanriverdi G, Cengiz M, Eser M, Soner BC, Oktem G (2011) Doxorubicin induced nephrotoxicity: protective effect of nicotinamide. Int J Cell Biol 2011:Article ID 390238

    Article  Google Scholar 

  • Beyranvand MR, Khalafi MK, Roshan VD, Choobineh S, Parsa SA, Piranfar MA (2011) Effect of taurine supplementation on exercise capacity of patients with heart failure. J Cardiol 57:333–337

    Article  PubMed  Google Scholar 

  • Comereski CR, Peden WM, Davidson TJ, Warner GL, Hirth RS, Frantz JD (1994) BR96-doxorubicin conjugate (BMS-182248) versus doxorubicin: a comparative toxicity assessment in rats. Toxicol Pathol 22:473–488

    Article  CAS  PubMed  Google Scholar 

  • De Luca A, Pierno S, Camerino DC (2015) Taurine: the appeal of a safe amino acidfor skeletal muscle disorders. J Transl Med 13:243

    Article  PubMed  PubMed Central  Google Scholar 

  • Deman A, Ceyssens B, Pauwels M, Zhang J, Houte KV, Verbeelen D, Van den Branden C (2001) Altered antioxidant defence in a mouse adriamycin model of glomerulosclerosis. Nephrol Dial Transplant 16:147–150

    Article  CAS  PubMed  Google Scholar 

  • Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57:727–741

    Article  CAS  PubMed  Google Scholar 

  • Grenier MA, Lipshultz SE (1998) Epidemiology of anthracycline cardiotoxicity in children and adults. Semin Oncol 25:72–85

    CAS  PubMed  Google Scholar 

  • Hassan MH, Ghobara M, Abd-Allah GM (2014) Modulator effects of meloxicam against doxorubicin-induced nephrotoxicity in mice. J Biochem Mol Toxicol 28:337–346

    Article  CAS  PubMed  Google Scholar 

  • Honma S, Takahashi N, Shinohara M, Nakamura K, Mitazaki S, Abe S, Yoshida M (2013) Amelioration of cisplatin- induced mouse renal lesions by acyclooxygenase (COX)-2 selective inhibitor. Eur J P harmacol 715:181–188

    CAS  Google Scholar 

  • Ito T, Schaffer S, Azuma J (2014) The effect of taurine on chronic heart failure: actions of taurine against catecholamine and angiotensin II. Amino Acids 46:111–119

    Article  CAS  PubMed  Google Scholar 

  • Kufe DW, Pollock RE, Weichselbaum RR, Bast RC, Gansler TS, Holland JF, Frei E III (eds) (2003) Cancer medicine, 6th edn. BC Decker, Hamilton, pp 569–583

    Google Scholar 

  • Mazue G, Iatropoulos M, Imondi A, Castellino S, Brughera M, Podesta A, Dellatorre P, Moneta D (1995) Anthracyclines—a review of general and special toxicity studies. Int J Oncol 7:713–726

    CAS  PubMed  Google Scholar 

  • Mihailovic-Stanojevic N, Jovovic D, Miloradovic Z, Grujic-Milanovic J, Jerkic M, Markovic-Lipkovski J (2009) Reduced progression of adriamycin nephropathy in spontaneously hypertensive rats treated by losartan. Nephrol Dial Transplant 24:1142–1150

    Article  CAS  PubMed  Google Scholar 

  • Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229

    Article  CAS  PubMed  Google Scholar 

  • Mohamed RH, Karam RA, Amer MG (2011) Epicatechin attenuates doxorubicin-induced brain toxicity: Critical role of TNF-alpha, iNOS and NF-kappaB. Brain Res Bull 86:22–28

    Article  CAS  PubMed  Google Scholar 

  • Nukatsuka M, Fujioka A, Saito H, Uchida J, Takeda S, Unemi N (1996) Prolongation of survival and antitumor activity of antitumor drugs in murine cancer cachexia model. Gan To Kagaku Ryoho 23:887–892

    CAS  PubMed  Google Scholar 

  • Oja SS, Saransaari P (2007) Pharmacology of taurine. Proc West Pharmacol Soc 50:8–15

    CAS  PubMed  Google Scholar 

  • Pansani MC, Azevedo PS, Rafacho BP, Minicucci MF, Chiuso-Minicucci F, Zorzella-Pezavento SG, Marchini JS, Padovan GJ, Fernandes AA, Matsubara BB, Matsubara LS, Zornoff LA, Paiva SA (2012) Atrophic cardiac remodeling induced by taurine deficiency in Wistar rats. PLoS One 7:e41439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rayson D, Richel D, Chia S, Jackisch C, van der Vegt S, Suter T (2008) Anthracycline-trastuzumab regimens for HER2/neu-overexpressing breast cancer: current experience andfuture strategies. Ann Oncol 19:1530–1539

    Article  CAS  PubMed  Google Scholar 

  • Rios A, Vargas-Robles H, Gamez-Mendez AM, Escalante B (2012) Cyclooxygenase-2 and kidney failure. Prostaglandins Other Lipid Mediat 98:86–90

    Article  CAS  PubMed  Google Scholar 

  • Rosa FT, Freitas EC, Deminice R, Jordão AA, Marchini JS (2014) Oxidative stress and inflammation in obesity after taurine supplementation: a double-blind, placebo-controlled study. Eur J Nutr 53:823–830

    Article  CAS  PubMed  Google Scholar 

  • Shafik AN, Khodeir MM, Fadel MS (2011) Animal study of anthracycline-induced cardiotoxicity and nephrotoxicity and evaluation of protective agents. J Cancer Sci Ther 3:96–103

    Article  CAS  Google Scholar 

  • Shima Y, Iwano M, Yoshizaki K, Tanaka T, Kawase I, Nishimoto N (2005) All-trans-retinoic acid inhibits the development of mesangial proliferative glomerulonephritis in interleukin-6 transgenic mice. Nephron Exp Nephrol 100:e54–e62

    Article  CAS  PubMed  Google Scholar 

  • Sinha BK, Trush MA, Kennedy KA, Mimnaugh EG (1984) Enzymatic activation and binding of adriamycin to nuclear DNA. Cancer Res 44:2892–2896

    CAS  PubMed  Google Scholar 

  • Suematsu S, Matsuda T, Aozasa K, Akira S, Nakano N, Ohno S, Miyazaki J, Yamamura K, Hirano T, Kishimoto T (1989) Igg1 plasmacytosis in interleukin 6 transgenic mice. Proc Natl Acad Sci U S A 86:7547–7551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taskin E, Dursun N (2012) The protection of selenium on adriamycin-induced mitochondrial damage in rat. Biol Trace Elem Res 147:165–171

    Article  CAS  PubMed  Google Scholar 

  • Tomiyama-Hanayama M, Rakugi H, Kohara M, Mima T, Adachi Y, Ohishi M, Katsuya T, Hoshida Y, Aozasa K, Ogihara T, Nishimoto N (2009) Effect of interleukin-6 receptor blockage on renal injury in apolipoprotein E-deficient mice. Am J Physiol Renal Physiol 297:F679–F684

    Article  CAS  PubMed  Google Scholar 

  • Torres VM, Simic VD (2012) Doxorubicin-induced oxidative injury of cardiomyocytes—do we have right strategies for prevention? In: Fiuza M (ed) Cardiotoxicity of oncologic treatments. Intech, Rijeka, pp 90–130

    Google Scholar 

  • Ujhazy P, Zaleskis G, Mihich E, Ehrke MJ, Berleth ES (2003) Doxorubicin induces specific immune functions and cytokine expression in peritoneal cells. Cancer Immunol Immunother 52:463–472

    Article  CAS  PubMed  Google Scholar 

  • Van den Branden C, Deman A, Ceyssens B, Pauwels M, Empsen C, Verbeelen D (2002) Vitamin E protects renal antioxidant enzymes and attenuates glomerulosclerosis in adriamycin-treated rats. Nephron 91:129–133

    Article  CAS  PubMed  Google Scholar 

  • Volkova M, Russell R (2011) Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr Cardiol Rev 7:214–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang GG, Li W, Lu XH, Zhao X, Xu L (2013) Taurine attenuates oxidative stress and alleviates cardiac failure in type I diabetic rats. Croat Med J 54:171–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wang YP, Tay Y, Harris DC (2000) Progressive adriamycin nephropathy in mice: sequence of histologic and immunohistochemical events. Kidney Int 58:1797–1804

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Tao L, Fan L, Peng Y, Yang K, Zhao Y, Song Q, Wanga Q (2015) Different gap junction-propagated effects on cisplatin transfer result in opposite responses to cisplatin in normal cells versus tumor cells. Sci Rep 5:12563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu XY, Ma PS, Wu W, Zhou R, Hao YJ, Niu Y, Sun T, Li YX, Yu JQ (2016) Neuroprotective actions of taurine on hypoxic-ischemic brain damage in neonatal rats. Brain Res Bull 124:295–305

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper was supported by Konkuk University in 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Kyung Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this paper

Cite this paper

Kim, YS. et al. (2017). Protective Effect of Taurine on Mice with Doxorubicin-induced Acute Kidney Injury. In: Lee, DH., Schaffer, S.W., Park, E., Kim, H.W. (eds) Taurine 10. Advances in Experimental Medicine and Biology, vol 975. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1079-2_95

Download citation

Publish with us

Policies and ethics