Skip to main content

Carbonate Anion Radical Generated by the Peroxidase Activity of Copper-Zinc Superoxide Dismutase: Scavenging of Radical and Protection of Enzyme by Hypotaurine and Cysteine Sulfinic Acid

  • Conference paper
Taurine 10

Abstract

Copper-zinc superoxide dismutase (SOD) is considered one of the most important mammalian antioxidant defenses and plays a relevant role due to its main function in catalyzing the dismutation of superoxide anion to oxygen and hydrogen peroxide. However, interaction between SOD and H2O2 produced a strong copper-bound oxidant (Cu(II)OH) that seems able to contrast the self-inactivation of the enzyme or oxidize other molecules through its peroxidase activity. The bicarbonate presence enhances the peroxidase activity and produces the carbonate anion radical (CO3 •–). CO3 •– is a freely diffusible reactive species capable of oxidizing several molecules that are unwieldy to access into the reactive site of the enzyme. Cu(II)OH oxidizes bicarbonate to the CO3 •–, which spreads out of the binding site and oxidizes hypotaurine and cysteine sulfinic acid to the respective sulfonates through an efficient reaction. These findings suggest a defense role for sulfinates against the damage caused by CO3 •–. The effect of hypotaurine and cysteine sulfinic acid on the CO3 •–-mediated oxidation of the peroxidase probe ABTS to ABTS cation radical (ABTS•+) has been studied. Both sulfinates are able to inhibit the oxidation of ABTS mediated by CO3 •–. The effect of hypotaurine and cysteine sulfinic acid against SOD inactivation by H2O2 (~42% protection of enzyme activity) has also been investigated. Interestingly, hypotaurine and cysteine sulfinic acid partially avoid the H2O2-mediated SOD inactivation, suggesting that the two sulfinates may have access to the SOD reactive site and preserve it by reacting with the copper-bound oxidant. In this way hypotaurine and cysteine sulfinic acid not only intercept CO3 •– which could move out from the reactive site and cause oxidative damage, but also prevents the inactivation of SOD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABTS:

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulphonic)

CA:

Cysteic acid

CO3 •– :

Carbonate anion radical

CSA:

Cysteine sulfinic acid

H2O2 :

Hydrogen peroxide

HCO3 :

Bicarbonate

HTAU:

Hypotaurine

RSO2 :

Sulfinates

RSO2 :

Sulfonyl radicals

RSO3 :

Sulfonates

SOD:

Cu–Zn superoxide dismutase

TAU:

Taurine

References

  • Augusto O, Bonini MG, Amanso AM, Linares E, Santos CCX, De Menezes S (2002) Nitrogen dioxide and carbonate radical anion: two emerging radicals in biology. Free Radic Biol Med 32:841–859

    Article  CAS  PubMed  Google Scholar 

  • Baseggio Conrado A, D’Angelantonio M, Torreggiani A, Pecci L, Fontana M (2014) Reactivity of hypotaurine and cysteine sulfinic acid toward carbonate radical anion and nitrogen dioxide as explored by the peroxidase activity of Cu, Zn superoxide dismutase and by pulse radiolysis. Free Radic Res 48:1300–1310

    Article  CAS  PubMed  Google Scholar 

  • Baseggio Conrado A, Pecci L, Capuozzo E, Fontana M (2015) Oxidation of hypotaurine and cysteine sulfinic acid by peroxidase-generated reactive species. Adv Exp Med Biol 803:41–51

    Article  PubMed  Google Scholar 

  • Bonini MG, Augusto O (2001) Carbon dioxide stimulates the production of thiyl, sulfinyl and disulfide radical anion from thiol oxidation by peroxynitrite. J Biol Chem 276:9749–9754

    Article  CAS  PubMed  Google Scholar 

  • Childs RE, Bardsley WG (1975) The steady-state kinetics of peroxidase with 2,2’-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochem J 145:93–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontana M, Amendola D, Orsini E, Boffi A, Pecci L (2005) Oxidation of hypotaurine and cysteine sulphinic acid by peroxynitrite. Biochem J 389:233–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontana M, Duprè S, Pecci L (2006) The reactivity of hypotaurine and cysteine sulfinic acid with peroxynitrite. Adv Exp Med Biol 583:15–24

    Article  CAS  PubMed  Google Scholar 

  • Fontana M, Giovannitti F, Pecci L (2008) The protective effect of hypotaurine and cysteine sulphinic acid on peroxynitrite-dependent oxidative reactions. Free Radic Res 42:320–330

    Article  CAS  PubMed  Google Scholar 

  • Fontana M, Pecci L, Duprè S, Cavallini D (2004) Antioxidant properties of sulfinates: protective effect of hypotaurine on peroxynitrite-dependent damage. Neurochem Res 29:111–116

    Article  CAS  PubMed  Google Scholar 

  • Fridovich I (1989) Superoxide dismutases. An adaptation to a paramagnetic gas. J Biol Chem 264:7761–7764

    CAS  PubMed  Google Scholar 

  • Goldstone AB, Liochev SI, Fridovich I (2006) Inactivation of copper, zinc superoxide dismutase by H2O2: mechanism of protection. Free Radic Biol Med 41:1860–1863

    Article  CAS  PubMed  Google Scholar 

  • Goss SPA, Singh RJ, Kalyanaraman B (1999) Bicarbonate enhances the peroxidase activity of Cu, Zn-superoxide dismutase role of carbonate anion radical. J Biol Chem 274:28233–28239

    Article  CAS  PubMed  Google Scholar 

  • Gunther MR, Peters JA, Sivaneri MK (2002) Histidinyl radical formation in the self-peroxidation reaction of bovine copper-zinc superoxide dismutase. J Biol Chem 277:9160–9166

    Article  CAS  PubMed  Google Scholar 

  • Harman LS, Mottley C, Mason RP (1984) Free radicals metabolites of L-cysteine oxidation. J Biol Chem 259:5609–5611

    Google Scholar 

  • Hildebraunt AG, Roots I (1975) Reduced nicotinamide adeninedinucleotide phosphate (NADPH)-dependent formation and breakdown of hydrogen peroxide during mixed-function oxidation reactions in liver microsomes. Arch Biochem Biophys 171:385–397

    Article  CAS  PubMed  Google Scholar 

  • Hirschberger LL, De La Rosa J, Stipanuk M (1985) Determination of cysteinesulfinate, hypotaurine and taurine in physiological samples by reversed-phase high-performance liquid chromatography. J Chromatogr B 343:303–313

    Article  CAS  Google Scholar 

  • Hodgson EK, Fridovich I (1975a) The interaction of bovine erythrocytes superoxide dismutase with hydrogen peroxide: inactivation of the enzyme. Biochemistry 14:5294–5299

    Article  CAS  PubMed  Google Scholar 

  • Hodgson EK, Fridovich I (1975b) Interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: chemiluminescence and peroxidation. Biochemistry 14:5299–5303

    Article  CAS  PubMed  Google Scholar 

  • Huie RE, Shoute LCT, Neta P (1991) Temperature dependance of the rate constants for the reactions of the carbonate radical with organic and inorganic reactants. In J Chem Kinet 23:541–552

    Article  CAS  Google Scholar 

  • Liochev SI, Chen LL, Hallewell RA, Fridovich I (1998) The familial amyotrophic lateral sclerosis-associated amino acid substitutions E100G, G93A, and G93R do not influence the rate of inactivation of copper- and zinc-containing superoxide dismutase by H2O2. Arch Biochem Biophys 352:237–239

    Article  CAS  PubMed  Google Scholar 

  • Liochev SI, Fridovich I (1999) On the role of bicarbonate in peroxidations catalyzed by Cu, Zn superoxide dismutase. Free Radic Biol Med 27:1444–1447

    Article  CAS  PubMed  Google Scholar 

  • Liochev SI, Fridovich I (2002) Copper, zinc superoxide dismutase and H2O2. Effects of bicarbonate on inactivation and oxidations of NADPH and urate, and on consumption of H2O2. J Biol Chem 277:34674–34678

    Article  CAS  PubMed  Google Scholar 

  • Liochev SI, Fridovich I (2004) CO2, not HCO3 , facilitates oxidations by Cu, Zn superoxide dismutase plus H2O2. Proc Natl Acad Sci U S A 101:743–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neta P, Huie RE (1985) Free-radical chemistry of sulfite. Environ Health Perspect 64:209–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecci L, Montefoschi G, Fontana M, Duprè S, Costa M, Cavallini D (2000a) Hypotaurine and superoxide dismutase. Protection of the enzyme against inactivation by hydrogen peroxide and peroxidation to taurine. Adv Exp Med Biol 483:163–168

    Article  CAS  PubMed  Google Scholar 

  • Pecci L, Costa M, Antonucci A, Montefoschi G, Cavallini D (2000b) Methylene blue photosensitized oxidation of cysteine sulfinic acid and other sulfinates: the involvement of singlet oxygen and the azide paradox. Biochem Biophys Res Commun 270:782–786

    Article  CAS  PubMed  Google Scholar 

  • Sankarapandi S, Zweier JL (1999) Bicarbonate is required for the peroxidase function of Cu, Zn-superoxide dismutase at physiological pH. J Biol Chem 274:1226–1232

    Article  CAS  PubMed  Google Scholar 

  • Shafirovich V, Dourandin A (2001) The carbonate radical is a site-selective oxidizing agent of guanine in double-stranded oligonucleotides. J Biol Chem 276:24621–24626

    Article  CAS  PubMed  Google Scholar 

  • Valentine JS, Hart PJ (2003) Misfolded CuZnSOD and amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 100:3617–3622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widedau-Pazos M, Goto JJ, Rabizadeh S, Gralla EB, Roe JA, Lee MK, Valentine JS, Bredesen DE (1996) Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 271:515–518

    Article  Google Scholar 

  • Yermilov V, Yoshie Y, Rubio J, Ohshima H (1996) Effects of carbon dioxide/bicarbonate on induction of DNA single-strand breaks and formation of 8-nitroguanine, 8-oxoguanine and basepropenal mediated by peroxynitrite. FEBS Lett 399:67–70

    Article  CAS  PubMed  Google Scholar 

  • Yim MB, Chock PB, Stadtman ER (1993) Enzyme function of copper, zinc superoxide dismutase as a free radical generator. J Biol Chem 268:4099–4105

    CAS  PubMed  Google Scholar 

  • Yim MB, Kang JH, Yim HS, Kwak HS, Chock PB, Stadtman ER (1996) A gain-of-function of an amyotrophic lateral sclerosis-associated Cu, Zn-superoxide dismutase mutant: an enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proc Natl Acad Sci U S A 93:5709–5714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Joseph J, Felix C, Kalyanaraman B (2000) Bicarbonate enhances the hydroxylation, nitration, and peroxidation reactions catalyzed by copper, zinc superoxide dismutase. Intermediacy of carbonate anion radical. J Biol Chem 275:14038–14045

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Joseph J, Gurney M, Becker D, Kalyanaraman B (2002) Bicarbonate enhances peroxidase activity of Cu, Zn-superoxide dismutase Role of carbonate anion radical and scavengig of carbonate anion radical by metalloporphyrin antioxidant enzyme mimetics. J Biol Chem 277:1013–1020

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessia Baseggio Conrado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this paper

Cite this paper

Baseggio Conrado, A. et al. (2017). Carbonate Anion Radical Generated by the Peroxidase Activity of Copper-Zinc Superoxide Dismutase: Scavenging of Radical and Protection of Enzyme by Hypotaurine and Cysteine Sulfinic Acid. In: Lee, DH., Schaffer, S.W., Park, E., Kim, H.W. (eds) Taurine 10. Advances in Experimental Medicine and Biology, vol 975. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1079-2_43

Download citation

Publish with us

Policies and ethics