Skip to main content

The Progress of New Targets of Anti-HIV and Its Inhibitors

  • Chapter
  • First Online:
Translational Bioinformatics and Its Application

Part of the book series: Translational Medicine Research ((TRAMERE))

  • 2197 Accesses

Abstract

HIV-1 virus is the largest genetic variation in human pathogens, with a high reproduction, high mutation, and high reorganization. At present, commonly prescribed drugs of anti-AIDS mainly contain nucleoside analogue reverse transcriptase inhibitor, non-nucleoside reverse transcriptase inhibitor, protease inhibitor, and integrase inhibitor. With rapid development in biotechnology during the latest decades, it has gradually uncovered not only the details of fusion and endocytosis between HIV and the host cells but also the necessary enzymes of HIV-1 during the whole life cycle, which brings about great progress in the field of anti-AIDS drugs development. In this article, we focus on some crucial proteins and cofactors correlated with the virus or the human defense function. The cofactor CCR5 and the viral envelope protein gp120 are significant in the initial process of fusion between HIV-1 and the host cells. Both of them become important targets of anti-HIV, and numerous inhibitors have been developed in which some have entered various stages of clinical trials or even been approved for marketing. Besides, the target of virus infectivity factor (Vif) and TRIM5-α protein is correlating with the host defense system. The inhibition of the former and the expression of the latter will increase the ability of response to the viral invasion. Both of them are still at the experimental stage. New targets and some corresponding inhibitors have been referred in this review; it is hoped that it can provide some clues for the drug development of anti-HIV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiamkitsumrit B, Dampier W, Martin-Garcia J, Nonnemacher MR, Pirrone V, Ivanova T, Zhong W, Kilareski E, Aldigun H, Frantz B, Rimbey M, Wojno A, Passic S, Williams JW, Shah S, Blakey B, Parikh N, Jacobson JM, Moldover B, Wigdahl B. Defining Differential Genetic Signatures in CXCR4- and the CCR5-Utilizing HIV-1 Co-Linear Sequences PloS One 2014; 9: 1–22 doi: 10.1371/journal.pone.0107389 . PMID:25265194

    Google Scholar 

  • Alexandre KB, Gray ES, Pantophlet R, Moore PL, McMahon JB, Chakauya E, O'Keefe BR, Chikwamba R, Morris L. Binding of the mannose-specific lectin, griffithsin, to HIV-1 gp120 exposes the CD4-binding site. J Virol. 2011;85:9039–50. doi:10.1128/JVI.02675-10. PMID:21697467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson JS. Using TRIM5α as an HIV therapeutic: the alpha gene? Expert Opin Biol Ther. 2013;13:1029–38. doi:10.1517/14712598.2013.779251. PMID:23480791

    Article  CAS  PubMed  Google Scholar 

  • Berro R, Klasse PJ, Jakobsen MR, Gorry PR, Moore JP, Sanders RW. V3 determinants of HIV-1 escape from the CCR5 inhibitors Maraviroc and Vicriviroc. Virology 2012; 427: 158–165 doi:10.1016/j.virol.2012.02.006. PMID:22424737

    Google Scholar 

  • Biorn AC, Cocklin S, Madani N, Si Z, Ivanovic T, Samanen J, Van Ryk DI, Pantophlet R, Burton DR, Freire E, Sodroski J, Chaiken IM. Mode of action for linear peptide inhibitors of HIV-1 gp120 interactions. Biochemistry. 2004;43:1928–38. doi:10.1021/bi035088i. PMID:14967033

    Article  CAS  PubMed  Google Scholar 

  • Cen S, Peng ZG, Li XY, Li ZR, Ma J, Wang YM, Fan B, You XF, Wang YP, Liu F, Shao RG, Zhao LX, Yu L, Jiang JD. Small molecular compounds inhibit HIV-1 replication through specifically stabilizing APOBEC3G. J Biol Chem. 2010;285:16546–52. doi:10.1074/jbc.M109.085308. PMID:20363737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi YH, Rho WS, Kim ND, Park SJ, Shin DH, Kim JW, Im SH, Won HS, Lee CW, Chae CB, Sung YC. Short peptides with induced beta-turn inhibit the interaction between HIV-1 gp120 and CD4. J Med Chem. 2001;44:1356–63. doi:10.1021/jm000403+. PMID:11311058

    Article  CAS  PubMed  Google Scholar 

  • Corti D, Langedijk JP, Hinz A, Seaman MS, Vanzetta F, Fernandez-Rodriguez BM, Silacci C, Pinna D, Jarrossay D, Balla-Jhagjhoorsingh S, Willems B, Zekveld MJ, Dreja H, O’Sullivan E, Pade C, Orkin C, Jeffs SA, Montefiori DC, Davis D, Weissenhorn W, McKnight A, Heeney JL, Sallusto F, Sattentau QJ, Weiss RA, Lanzavecchia A. Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals. PLoS One. 2010;5:e8805. doi:10.1371/journal.pone.0008805. PMID: 20098712

    Article  PubMed  PubMed Central  Google Scholar 

  • Doores K, Burton DR. Variable loop glycan dependency of the broad and potent HIV-1-neutralizing antibodies PG9 and PG16. J Virol. 2010;84:10510–21. doi:10.1128/JVI.00552-10. PMID:20686044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng QM, Li HP, Bao ZY, Liu YJ, Zhuang DM, Li L, Liu SY, Li JY. Indinavir resistance evolution in one human immunodeficiency virus type 1 infected patient revealed by single-genome amplification. Virologica Sinica 2010; 25: 316–328 doi:10.1007/sI2250-010-3122-4. PMID:20960178

    Google Scholar 

  • Hollox EJ, Hoh BP. Human gene copy number variation and infectious disease. Hum Genet. 2014;133:1217–33. doi:10.1007/S00439-014-1457-x. PMID:25110110

    Article  CAS  PubMed  Google Scholar 

  • Kaqiampakis I, Gharibi A, Mankowski MK, Snyder BA, Ptak RG, Alatas K, LiWang PJ. Potent strategy to inhibit HIV-1 by binding both gp120 and gp41. Antimicrob Agents Chemother. 2011;55:264–75. doi:10.1128/AAC.00376-10. PMID:20956603

    Article  Google Scholar 

  • Kim S, Jao S, Laurence JS, LiWang PJ. Structural comparison of monomeric variants of the chemokine MIP-1β having differing ability to bind the receptor CCR5. Biochemistry. 2001;40:10782–91. doi:10.1021/bi011065x. PMID:11535053

    Article  CAS  PubMed  Google Scholar 

  • Kwon YD, Finzi A, Wu X, Dogo-Isonagie C, Lee LK, Moore LR, Schmidt SD, Stuckey J, Yang Y, Zhou T, Zhu J, Vicic DA, Debnath AK, Shapiro L, Bewley CA, Mascola JR, Sodroski JG, Kwong PD. Unliganded HIV-1 gp120 core structures assume the CD4-bound conformation with regulation by quaternary interactions and variable loops. Proc Natl Acad Sci USA. 2012;109:5663–8. doi:10.1073/pnas.1112391109. PMID:22451932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Liang D, Li JY, Zhao RY. APOBEC3G-UBA2 fusion as a potential strategy for stable expression of APOBEC3G and inhibition of HIV-1 replication. Retrovirology. 2008;5:72–85. doi:10.1186/1742-4690-5-72. PMID:18680593

    Article  PubMed  PubMed Central  Google Scholar 

  • Lienlaf M, Hayashi F, Di Nunzio F, Tochio N, Kigawa T, Yokoyama S, Diaz-Griffero F. Contribution of E3-ubiquitin ligase activity to HIV-1 restriction by TRIM5alpha(rh): structure of the RING domain of TRIM5alpha. J Virol. 2011;85:8725–37. doi:10.1128/JVI.00497-11. PMID:21734049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Huang B, Zhan P, De CE, Liu X. Discovery of small molecular inhibitors targeting HIV-1 gp120-CD4 interaction derived from BMS-378806. Eur J Med Chem. 2014;86:481–90. doi:10.1016/j.ejmech.2014.09.012. PMID:25203778

    Article  CAS  PubMed  Google Scholar 

  • Lobritz MA, Ratcliff AN, Marozsan AJ, Dudley DM, Tilton JC, Arts EJ. Multifaceted mechanism of HIV inhibition and resistance to CCR5 inhibitors PSC-RANTES and maraviroc. Antimicrob Agents Chemother. 2013;57:2640–50. doi:10.1128/AAC.02511-12. PMID:23529732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucia L. CCR5: from natural resistance to a new anti-HIV strategy. Viruses. 2010;2:574–600. doi:10.3390/v2020574. PMID:21994649

    Article  Google Scholar 

  • Maria TP, Francis WR, Candace BP, Michael RR. Chemokine receptor-5 (CCR5) is a receptor for the HIV entry inhibitor peptide T (DAPTA). Anriviral. 2005;67:83–92. doi:10.1016/j.antiviral.2005.03.007. PMID:16002156

    Google Scholar 

  • Marjan DG, Marcel BMT, Jean PO, Julien RL, Jean MN, Daisy IP, Arreaza MG, Jason SS, Maarten K, Jan DB, Menno AR. Expression of the chemokine receptor CCR5 in psoriasis and results of a randomized placebo controlled trial with a CCR5 inhibitor. Arch Dermatol Res. 2007;299:305–13. doi:10.1007/s00403-007-0764-7. PMID:17647003

    Article  Google Scholar 

  • Mikawa AY, Malavazil TSA, Abrao EP, Da CP. The beta-chemokines MIP-1alpha and RANTES and lipoprotein metabolism in HIV-infected Brazilian patients. Braz J Infect Dis. 2005;9:315–23. PMID:16270124

    Article  PubMed  Google Scholar 

  • Nathans R, Cao H, Sharova N, Ali A, Sharkey M, Stranska R, Stevenson M, Rana TM. Small-molecule inhibition of HIV-1 Vif. Nat Biotechnol. 2008;26:1187–92. doi:10.1038/nbt.1496. PMID:18806783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni J, Zhu YN, Zhong XG, Ding Y, Hou LF, Tong XK, Tang W, Ono S, Yang YF, Zuo JP. The chemokine receptor antagonist, TAK-779, decreased experimental autoimmune encephalomyelitis by reducing inflammatory cell migration into the central nervous system, without affecting T cell function. British journal of Pharmacology. 2009;158:2046–56. doi:10.1111/j.1476-5381.2009.00528.x. PMID:20050195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polo S, Nardese V, De SC, Arcelloni C, Paroni R, Sironi F, Verani A, Rizzi M, Boloqnesi M, Lusso P. Enhancement of the HIV-1 inhibitory activity of ranted by modification of the N-terminal region: dissociation from CCR5 activation. Eur J Immunol. 2000;30:3190–8

    Article  CAS  PubMed  Google Scholar 

  • Roa A, Hayashi F, Yang Y, Lienlaf M, Zhou J, Shi J, Watanabe S, Kigawa T, Yokoyama S, Aiken C, Diaz-Griffero F. RING domain mutations uncouple TRIM5α restriction of HIV-1 from inhibition of reverse transcription and acceleration of uncoating. J Virol. 2012;(86):1717–27. doi:10.1128/JVI.05811-11. PMID:22114335

  • Rower JE, Meditz A, Gardner EM, Lichtenstein K, Predhomme J, Bushman LR, Klein B, Zheng JH, Mawhinney S, Anderson PL. Effect of HIV-1 infection and sex on the cellular pharmacology of the antiretroviral drugs zidovudine and lamivudine. Antimicrob Agents Chemother 2012; 55: 3011–3019 doi:10.1128/AAC.06337-11. PMID:22391541

    Google Scholar 

  • Schnur E, Noah E, Ayzenshtat I, Sargsyan H, Inui T, Ding FX, Arshava B, Sagi Y, Kessler N, Levy R, Scherf T, Naider F, Anglister J. The conformation and orientation of a 27-residue CCR5 peptide in a ternary complex with HIV-1 gp120 and a CD4-mimic peptide. J Mol Biol. 2011;410:778–97. doi:10.1016/j.jmb.2011.04.023. PMID:21763489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schols D, Proost P, Struyf S, Wuyts A, De MI, Scharpe S, Van DJ, De CE. CD26-processed RANTES(3-68), but not intact RANTES, has potent anti-HIV-1 activity. Antiviral Res. 1998;39:175–87. PMID:9833958

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava IH, Wendel K, Lalonde JM. Spontaneous rearrangement of the β20/β21 strands in simulations of unliganded HIV-1 glycoprotein, gp120. Biochemistry. 2012;51:7783–93. doi:10.1021/bi300878d. PMID:22963284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solanki AK, Rathore YS, Basmalia MD, Dhoke RR, Nath SK, Nihalani D, Ashish. Global shape and ligand binding efficiency of the HIV-1 neutralizing antibodies differs from the ones which cannot neutralize. J Biol Chem 2014; 289: 1–38 doi:10.1074/jbc.M114.563486. PMID:25331945

  • Tan H, Rader AJ. Identification of putative, stable binding regions through flexibility analysis of HIV-1 gp120. Proteins. 2009;74:881–94. doi:10.1002/prot.22196. PMID:18704932

    Article  CAS  PubMed  Google Scholar 

  • Tan Q, Zhu Y, Li L, Chen, Z., Han, GW, Kufareva, ILT, Ma L, Fenalti G, Li J, Zhang, WX, Yang H, Jiang H, Cherezov V, Liu H, Stevens RC, Zha Q, Wu B. Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science 2013; 341: 1387–1390 doi:10.1126/science.1241475. PMID:24030490

    Google Scholar 

  • Trkola A, Gordon C, Matthews J, Maxwell E, Ketas T, Czaplewski L, Proudfoot AE, Moore JP. The CC-chemokine RANTES increases the attachment of human immunodeficiency virus type 1 to target cells via glycosaminoglycans and also activates a signal transduction pathway that enhances viral infectivity. J Virol. 1999;73:6370–9. PMID:10400729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Zhang W, Lv M, Zuo T, Kong W, Yu X. Identification of a Cullin5-ElonginB-ElonginC E3 complex in degradation of feline immunodeficiency virus Vif-mediated feline APOBEC3 proteins. J Virol. 2011;85:12482–91. doi:10.1128/JVI.05218-11. PMID:21957297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Kinlock BL, Shao Q, Turner TM, Liu B. HIV-1 Vif inhibits G to A hypermutations catalyzed by virus-encapsidated APOBEC3G to maintain HIV-1 infectivity. Retrovirology. 2014;11:89–99. doi:10.1186/s12977-014-0089-5. PMID:25304135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Deng R, Wu W. Study on CCR5 analogs and affinity peptides. Protein Eng Des Sel. 2012;25:97–105. doi:10.1093/protein/gzr062. PMID:22238429

    Article  PubMed  Google Scholar 

  • Zappe H, Snell ME, Bossard MJ. PEGylation of cyanovirin-N, an entry inhibitor of HIV. Adv Drug Deliv Rev. 2008;60:79–87. doi:10.1016/j.addr.2007.05.016. PMID:17884238

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Qiu W, Xiang R, Ling F, Zhuo M, Du H, Wang J, Wang X. TRIM5α polymorphism identification in cynomolgus macaques of Vietnamese origin and Chinese rhesus macaques. Am J Primatol. 2013;75:938–46. doi:10.1002/ajp.22158. PMID:23775958

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Ma L, Jiang S, Lu H, Liu S, He Y, Strick N, Neamati N, Debnath AK. Identification of N-phenyl-N′-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4. Virology. 2005;339:213–25. doi:10.1016/j.virol.2005.06.008. PMID:15996703

    Article  CAS  PubMed  Google Scholar 

  • Zhou T, Xu L, Dey B, Hessell AJ, Van RD, Xiang SH, Yang X, Zhang MY, Zwick MB, Arthos J, Burton DR, Dimitrov DS, Sodroski J, Wyatt R, Nabel GJ, Kwong PD. Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature. 2007;445:732–7. doi:10.1038/nature05580. PMID:17301785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou D, Wang Y, Tokunaqa K, Huang F, Sun B, Yang R. The HIV-1 accessory protein Vpr induces the degradation of the anti-HIV-1 agent APOBEC3G through a VprBP-mediated proteasomal pathway. Virus Res. 2014;195:25–34. doi:10.1016/j.virusres.2014.08.021. PMID:25200749

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the National Natural Science Foundation of China (No. 30472166, No. 81241114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai X. Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Shanghai Jiao Tong University Press, Shanghai and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wu, K.Z., Li, A.X. (2017). The Progress of New Targets of Anti-HIV and Its Inhibitors. In: Wei, DQ., Ma, Y., Cho, W., Xu, Q., Zhou, F. (eds) Translational Bioinformatics and Its Application. Translational Medicine Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1045-7_5

Download citation

Publish with us

Policies and ethics