Skip to main content

Diatoms as Indicators of Environmental Change in Estuaries

  • Chapter
  • First Online:
Applications of Paleoenvironmental Techniques in Estuarine Studies

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 20))

Abstract

Diatoms are valuable paleo-indicators of natural processes and environmental changes caused by human activities in estuaries. They have been used to study sea level change, climate variability, floods and tsunamis, problems associated with changes in salinity and nutrients due to human activities, and to assess ecosystem responses to remediation, among others. There are many challenges such as issues of sediment disturbance and frustule preservation, as well as limitations on the development of transfer functions due to a lack of analogue sites. However, the application of diatoms to paleo-studies in a range of coastal habitats has enabled reliable and informative qualitative and quantitative reconstructions of environmental change. This chapter provides an overview of diatom estuarine ecology, different applications of diatoms to estuarine paleoecological research, their potential yet often informative limitations, and challenges going forward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andrén E, Shimmield G, Brand T (1999) Environmental changes of the last three centuries indicated by siliceous microfossil records from the southwestern Baltic Sea. Holocene 9:25–38

    Article  Google Scholar 

  • Andrén E, Andrén T, Kunzendorf H (2000) Holocene history of the Baltic Sea as a background for assessing records of human impact in the sediments of the Gotland Basin. Holocene 10:687–702

    Article  Google Scholar 

  • Atwater BF, Furukawa R, Hemphill-Haley E et al (2004) Seventeenth-century uplift in eastern Hokkaido, Japan. Holocene 14:489–501

    Article  Google Scholar 

  • Barker P, Fontes JC, Gasse F et al (1994) Experimental dissolution of diatom silica in concentrated salt solutions and implications for paleoenvironmental reconstruction. Limnol Oceanogr 39:99–110

    Article  CAS  Google Scholar 

  • Bateman MD, Boulter CH, Carr AS et al (2007) Detecting post-depositional sediment disturbance in sandy deposits using optical luminescence. Quat Geochron 2:57–64

    Article  Google Scholar 

  • Battarbee RW, Jones VJ, Flower RJ et al (2001) Diatoms: terrestrial, algal and siliceous indicators. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3, Terrestrial, algal and siliceous indicators. Kluwer Academic, Dordrecht, pp 155–202

    Chapter  Google Scholar 

  • Bennion H (1994) A diatom phosphorus transfer function for shallow, eutrophic ponds in south east England. Hydrobiologia 275(276):391–410

    Article  Google Scholar 

  • Bennion H, Juggins S, Anderson NJ (1996) Predicting epilimnetic phosphorus concentrations using an improved diatom-based transfer function and its application to lake eutrophication management. Environ Sci Technol 30:2004–2007

    Article  CAS  Google Scholar 

  • Birks HJB, Line JM, Juggins S et al (1990) Diatoms and pH reconstruction. Phil Trans R Soc London 327:263–278

    Article  Google Scholar 

  • Birks JBH, Lotter AF, Juggins S et al (eds) (2012) Tracking environmental change using lake Sediments, vol 5, Data Handling and Numerical Techniques. Springer, Dordrecht

    Google Scholar 

  • Byrne R, Ingram BL, Starratt S et al (2001) Carbon-isotope, diatom, and pollen evidence for Late Holocene salinity change in a brackish marsh in the San Francisco estuary. Quat Res 55:66–76

    Article  CAS  Google Scholar 

  • Cassina F, Dalton C, Dillane M et al (2013) A multi-proxy paleolimnological study to reconstruct the evolution of a coastal brackish lake (Lough Furnace, Ireland) during the Late Holocene. Paleogeogr Paleoclimatol Paleoecol 383–384:1–15

    Article  Google Scholar 

  • Castro DF, de Oliveira PE, Rossetti DF et al (2013) Late Quaternary landscape evolution of northeastern Amazonia from pollen and diatom records. An Acad Bras Cienc 85:35–55

    Article  Google Scholar 

  • Clarke AL, Weckström K, Conley DJ et al (2006) Long-term trends in eutrophication and nutrients in the coastal zone. Limnol Oceanogr 51:385–397

    Article  CAS  Google Scholar 

  • Conley DJ (1999) Biogeochemical nutrient cycles and nutrient management strategies. Hydrobiologia 410:87–96

    Article  Google Scholar 

  • Cooper SR, Brush GS (1991) Long-term history of Chesapeake Bay anoxia. Science 254:992–996

    Article  CAS  Google Scholar 

  • Cooper SR, Huvane J, Vaithiyanathan P et al (1999) Calibration of diatoms along a nutrient gradient in Florida Everglades Water Conservation Area-2A, USA. J Paleolimnol 22:413–437

    Article  Google Scholar 

  • Cooper SR, McGlothlin SK, Madritch M et al (2004) Paleoecological evidence of human impacts on the Neuse and Pamlico Estuaries of North Carolina USA. Estuaries 27:617–633

    Article  CAS  Google Scholar 

  • Cooper SR, Gaiser E, Wachnicka A (2010) Estuarine paleoenvironmental reconstruction using diatoms. In: Smol JP, Stoermer E (eds) The diatoms: application for the environmental and earth sciences, 2nd edn. Cambridge University Press, Cambridge, pp 324–345

    Chapter  Google Scholar 

  • Cremer H, Bunnik FPM, Kirilova EP et al (2009) Diatom-inferred trophic history of IJsselmeer (The Netherlands). Hydrobiologia 631:279–287

    Article  CAS  Google Scholar 

  • Crusius J, Bothner MH, Sommerfield CK (2004) Bioturbation depths, rates and processes in Massachusetts Bay sediments inferred from modeling of Pb-210 and Pu239 + 240 profiles. Estuar Coast Shelf Sci 61:643–655

    Article  CAS  Google Scholar 

  • Dawson S, Smith DE, Ruffman A et al (1996) The diatom biostratigraphy of tsunamic sediments: examples from recent and middle Holocene events. Phys Chem Earth 21:87–92

    Article  Google Scholar 

  • Del Amo Y, Brzezinski MA (1999) The chemical form of dissolved Si taken up by marine diatoms. J Phycol 35:1162–1170

    Article  Google Scholar 

  • Dong XH, Bennion H, Battarbee R et al (2008) Tracking eutrophication in Taihu Lake using the diatom record: potential and problems. J Paleolimnol 40:413–429

    Article  Google Scholar 

  • Ellegaard M, Clarke AL, Reuss N et al (2006) Multi-proxy evidence of long-term changes in ecosystem structure in a Danish marine estuary, linked to increased nutrient loading. Estuar Coast Shelf Sci 68:567–578

    Article  Google Scholar 

  • Espinosa MA, Hassan GS, Isla F (2012) Diatom-inferred salinity changes in relation to Holocene sea-level fluctuations in estuarine environments of Argentina. Alcheringa 36:373–386

    Article  Google Scholar 

  • Eyre B, Balls P (1999) A comparative study of nutrient behavior along the salinity gradient of tropical and temperate estuaries. Estuaries 22:313–326

    Article  CAS  Google Scholar 

  • Fang Y, Wang YH, Liu YH et al (2012) Feature of phytoplankton community and canonical correlation analysis with environmental factors in Xiaoqing River estuary in autumn. In: Zhang L (ed) Second Sree Conference on Engineering Modelling and Simulation, vol 37, Proceedia Engineering., pp 19–24

    Google Scholar 

  • Flower RJ (1991) Seasonal changes in sedimenting material collected by high aspect ratio sediment traps operated in a holomictic eutrophic lake. Hydrobiologia 214:311–316

    Article  Google Scholar 

  • Flower RJ, Likoshway Y (1993) An investigation of diatom preservation in Lake Baikal. In: Fifth workshop on diatom algae. March 16–20, Irkutsk, Russia, pp 77–78

    Google Scholar 

  • Flower RJ, Ryves DB (2009) Diatom preservation: differential preservation of sedimentary diatoms in two saline lakes. Acta Bot Croat 68:381–399

    Google Scholar 

  • Fluin J, Gell P, Haynes D et al (2007) Palaeolimnological evidence for the independent evolution of neighbouring terminal lakes, the Murray Darling Basin, Australia. Hydrobiologia 591:117–134

    Article  Google Scholar 

  • Foged N (1978) Diatoms in Eastern Australia. Bibliotheca Phycologica. Band 41, J Cramer, Germany, 243 pp

    Google Scholar 

  • Freund H, Gerdes G, Streif H et al (2004) The indicative meaning of diatoms, pollen and botanical macro fossils for the reconstruction of paleoenvironments and sea-level fluctuations along the coast of Lower Saxony; Germany. Quat Int 112:71–87

    Article  Google Scholar 

  • Fritz SC, Cumming BF, Gasse F et al (1999) Diatoms as indicators of hydrologic and climatic change in saline lakes. In: Stoermer E, Smol JP (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 41–72

    Chapter  Google Scholar 

  • Gaiser E (2008) Periphyton as in indicator of restoration in the Everglades. Ecol Indicators 9:S37–S45

    Article  CAS  Google Scholar 

  • Gasse F (1983) Diatoms from East Africa. Bibliotheca Phycologica Band 11, J Cramer, Stuttgart, 105 pp

    Google Scholar 

  • Glibert PM, Heil CA, O’Neil JM et al (2006) Nitrogen, phosphorus, silica, and carbon in Moreton Bay, Queensland, Australia: differential limitation of phytoplankton biomass and production. Estuar Coast 29:209–221

    Article  CAS  Google Scholar 

  • Goff J, McFadgen BG, Chague-Goff C (2004) Sedimentary differences between the 2002 Easter storm and the 15th-century Okoropunga tsunami, southeastern North Island, New Zealand. Mar Geol 204:235–250

    Article  Google Scholar 

  • Goff J, Pearce S, Nichol SL et al (2010) Multi-proxy records of regionally-sourced tsunamis, New Zealand. Geomorphology 118:369–382

    Article  Google Scholar 

  • Goff J, Chague-Goff C, Nichol S et al (2012) Progress in paleotsunami research. Sediment Geol 243:70–88

    Article  Google Scholar 

  • Grinham A, Gale D, Udy J (2011) Impact of sediment type, light and nutrient availability on benthic diatom communities of a large estuarine bay: Moreton Bay, Australia. J Paleolimnol 46:511–523

    Article  Google Scholar 

  • Guinder VA, Popovich CA, Molinero JC et al (2010) Long-term changes in phytoplankton phenology and community structure in the Bahia Blanca Estuary, Argentina. Mar Biol 157:2703–2716

    Article  Google Scholar 

  • Haese RR, Murray EJ, Smith CS et al (2007) Diatoms control nutrient cycles in a temperate, wave-dominated estuary (southeast Australia). Limnol Oceanogr 52:2686–2700

    Article  CAS  Google Scholar 

  • Hassan GS (2013) Diatom-based reconstruction of Middle to Late Holocene paleoenvironments in Lake Lonkoy, southern Pampas, Argentina. Diatom Res 28:473–486

    Article  Google Scholar 

  • Hassan GS, Espinosa MA, Isla FI (2007) Dead diatom assemblages in surface sediments from a low impacted estuary: the Quequen Salado river, Argentina. Hydrobiologia 579:257–270

    Article  Google Scholar 

  • Hassan GS, Espinosa MA, Isla FI (2008) Fidelity of dead diatom assemblages in estuarine sediments: how much environmental information is preserved? Palaios 23:112–120

    Article  Google Scholar 

  • Haynes D, Skinner R, Tibby J et al (2011) Diatom and foraminifera relationships to water quality in The Coorong, South Australia, and the development of a diatom-based salinity transfer function. J Paleolimnol 46:543–560

    Article  Google Scholar 

  • Hemphill-Haley E (1996) Diatoms as an aid in identifying late-Holocene tsunami deposits. Holocene 6:439–448

    Article  Google Scholar 

  • Hendey NI (1964) An Introductory Account of the Smaller Algae of British Coastal Waters, vol V, Bacillariophyceae (Diatoms). Her Majesty’s Stationary Office, London, 186 pp

    Google Scholar 

  • Hill TCB, Woodland WA, Spencer CD et al (2007) Holocene sea-level change in the Severn Estuary, southwest England: a diatom-based sea-level transfer function for macrotidal settings. Holocene 17:639–648

    Article  Google Scholar 

  • Horton BP, Corbett R, Culver SJ et al (2006) Modern saltmarsh diatom distributions of the Outer Banks, North Carolina, and the development of a transfer function for high resolution reconstructions of sea level. Estuar Coast Shelf Sci 69:381–394

    Article  Google Scholar 

  • John J (1983) The diatom flora of the Swan River. Bibliotheca Phycologica Band 64, J Cramer, Stuttgart, 359 pp

    Google Scholar 

  • Juggins S (1992) Diatoms in the Thames Estuary, England: ecology, paleoecology and salinity transfer function. Bibliotheca Phycologica Band 25, J Cramer, Stuttgart, 216 pp

    Google Scholar 

  • Kauppila P, Weckström K, Vaalgamaa S et al (2005) Tracing pollution and recovery using sediments in an urban estuary, northern Baltic Sea: are we far from ecological reference conditions? Mar Ecol Prog Ser 290:35–53

    Article  Google Scholar 

  • Khan NS, Vane CH, Horton BP et al (2015) The application of delta C-13, TOC and C/N geochemistry to reconstruct Holocene relative sea levels and paleoenvironments in the Thames Estuary, UK. J Quat Sci 30:417–433

    Article  Google Scholar 

  • Lavoie C, Pienitz R, Allard M (2006) Diatom flora of the Nastapoka River delta: an emerging coastal system on the eastern shore of Hudson Bay, subarctic Quebec. Nova Hedwigia 83:31–51

    Article  Google Scholar 

  • Lent RM, Lyons B (2001) Biogeochemistry of silica in Devils Lake: implications for diatom preservation. J Paleolimnol 26:53–66

    Article  Google Scholar 

  • Lewin J (1960) The dissolution of silica from diatom walls. Geochim Cosmochim Acta 21:182–198

    Article  Google Scholar 

  • Li XX, Bianchi TS, Yang ZS et al (2011) Historical trends of hypoxia in Changjiang River estuary: applications of chemical biomarkers and microfossils. J Mar Syst 86:57–68

    Article  Google Scholar 

  • Liukkonen M, Kairesalo T, Keto J (1993) Eutrophication and recovery of Lake Vesijärvi (south Finland): diatom frustules in varved sediments over a 30-year period. Hydrobiologia 269:415–426

    Article  Google Scholar 

  • Lizitzin AP (1971) Distribution of siliceous microfossils in suspension and in bottom deposits. In: Funnel BM, Reidel WR (eds) The Micropaleontology of Oceans. Cambridge University Press, Cambridge, pp 173–195

    Google Scholar 

  • Loebl M, Dolch T, van Beusekom JEE (2007) Annual dynamics of pelagic primary production and respiration in a shallow coastal basin. J Sea Res 58:269–282

    Article  Google Scholar 

  • Logan B, Taffs KH (2013) Relationship between diatoms and water quality (TN, TP) in sub-tropical east Australian estuaries. J Paleolimnol 50:123–137

    Article  Google Scholar 

  • Logan B, Taffs KH, Cunningham L (2010) Applying paleolimnological techniques in estuaries: a cautionary case study from Moreton Bay, Australia. Mar Freshw Res 61:1039–1047

    Article  CAS  Google Scholar 

  • Lundholm N, Clarke A, Ellegaard M (2010) A 100-year record of changing pseudo-nitzschia species in a sill-fjord in Denmark related to nitrogen loading and temperature. Harmful Algae 9:449–457

    Article  Google Scholar 

  • Maestrini SY, Breret M, Berland BR et al (1997) Nutrients limiting the algal growth potential (AGP) in the Po River plume and an adjacent area, northwest Adriatic Sea: enrichment bioassays with the test algae Nitzschia closterium and Thalassiosira pseudonana. Estuaries 20:416–429

    Article  CAS  Google Scholar 

  • McQuoid MR, Hobson LA (1997) A 91-year record of seasonal and interannual variability of diatoms from laminated sediments in Saanich Inlet, British Columbia. J Plankton Res 19:173–194

    Article  Google Scholar 

  • Norström E, Risberg J, Gröndahl H et al (2012) Coastal paleo-environment and sea-level change at Macassa Bay, southern Mozambique, since c 6600 cal BP. Quat Int 260:153–163

    Article  Google Scholar 

  • Parsons ML (1998) Salt marsh sedimentary record of the landfall of Hurricane Andrew on the Louisiana coast: diatoms and other paleoindicators. J Coast Res 14:939–950

    Google Scholar 

  • Parsons ML, Dortch Q, Turner RE et al (1999) Salinity history of coastal marshes reconstructed from diatom remains. Estuaries 22:1078–1089

    Article  Google Scholar 

  • Pike J, Allen CS, Leventer A et al (2008) Comparison of contemporary and fossil diatom assemblages from the western Antarctic Peninsula shelf. Mar Micropaleontol 67:274–287

    Article  Google Scholar 

  • Plater AJ, Horton BP, Haworth EY et al (2000) Holocene tidal levels and sedimentation rates using a diatom-based paleoenvironmental reconstruction: the Tees estuary, northeastern England. Holocene 10:441–452

    Article  Google Scholar 

  • Podzorski AC, Hakansson H (1987) Freshwater and marine diatoms from Palawan (a Philippine Island). Bibliotheca Phycologica, Band 13, J Cramer, Stuttgart, 245 pp

    Google Scholar 

  • Ribeiro L, Brotas V, Rince Y et al (2013) Structure and diversity of intertidal benthic diatom assemblages in contrasting shores: a case study from the Tagus Estuary. J Phycol 49:258–270

    Article  Google Scholar 

  • Risberg J, Sandgren P, Andrén E (1996) Early Holocene shore displacement and evidence of irregular isostatic uplift northwest of Lake Vanern, western Sweden. J Paleolimnol 15:47–63

    Article  Google Scholar 

  • Round FE, Crawford RM, Mann DG (1990) The diatoms: biology and morphology of the Genera. Cambridge University Press, Cambridge, 746 pp

    Google Scholar 

  • Ryan NA, Mitrovic SM (2008) Temporal and spatial variability in the phytoplankton community of Myall lakes, Australia, and influences of salinity. Hydrobiologia 608:69–86

    Article  CAS  Google Scholar 

  • Ryves DB, Juggins S, Fritz SC et al (2001) Experimental diatom dissolution and the quantification of microfossil preservation in sediments. Paleogeogr Paleoclimatol Paleoecol 172:99–113

    Article  Google Scholar 

  • Ryves DB, Battarbee RW, Fritz SC (2009) The dilemma of disappearing diatoms: incorporating diatom dissolution data into paleoenvironmental modelling and reconstruction. Quat Sci Rev 28:120–136

    Article  Google Scholar 

  • Sanders JG, Cibik SJ, D’Elia CF et al (1987) Nutrient enrichment studies in a coastal plain estuary: changes in phytoplankton species composition. Can J Fish Aquat Sci 44:83–90

    Article  CAS  Google Scholar 

  • Saunders KM (2011) A diatom dataset and diatom-salinity inference model for southeast Australian estuaries and coastal lakes. J Paleolimnol 46:525–542

    Article  Google Scholar 

  • Saunders KM, Taffs KH (2009) Palaeoecology: a tool to improve the management of Australian estuaries. J Environ Manage 90:2730–2736

    Article  Google Scholar 

  • Saunders KM, McMinn A, Roberts D et al (2007) Recent human-induced salinity changes in Ramsar-listed Orielton Lagoon, south-east Tasmania, Australia: a new approach for coastal lagoon conservation and management. Aquat Conserv 17:51–70

    Article  Google Scholar 

  • Savage C, Leavitt PR, Elmgren R (2010) Effects of land use, urbanization, and climate variability on coastal eutrophication in the Baltic Sea. Limnol Oceanogr 55:1033–1046

    Article  CAS  Google Scholar 

  • Sawai Y, Horton BP, Nagumo T (2004) The development of a diatom-based transfer function along the Pacific coast of eastern Hokkaido, northern Japan—an aid in paleoseismic studies of the Kuril subduction zone. Quat Sci Rev 23:2467–2483

    Article  Google Scholar 

  • Scanes P, Ferguson A, Potts J (2017) Estuary form and function: implications for palaeoecological studies. In: Weckström K, Saunders KM, Gell PA, Skilbeck CG (eds) Applications of paleoenvironmental techniques in estuarine studies, vol 20, Developments in paleoenvironmental research. Springer, Dordrecht

    Google Scholar 

  • Schallenberg M, Goff J, Harper MA (2012) Gradual, catastrophic and human induced environmental changes from a coastal lake, southern New Zealand. Sed Geol 273:48–57

    Article  Google Scholar 

  • Shennan I, Green F, Innes J et al (1996) Evaluation of rapid relative sea-level changes in north-west Scotland during the last glacial-interglacial transition: evidence from Ardtoe and other isolation basins. J Coast Res 12:862–874

    Google Scholar 

  • Sherrod BL, Bucknam RC, Leopold EB (2000) Holocene relative sea level changes along the Seattle Fault at restoration point, Washington. Quat Res 54:384–393

    Article  Google Scholar 

  • Skilbeck CG, Trevathan-Tackett S, Apichanangkool P et al (2017) Sediment sampling in estuaries—site selection and sampling techniques. In: Weckström K, Saunders KM, Gell PA, Skilbeck CG (eds) Applications of paleoenvironmental techniques in estuarine studies, vol 20, Developments in paleoenvironmental research. Springer, Dordrecht

    Google Scholar 

  • Smol J, Stoermer E (2010) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, 667 pp

    Book  Google Scholar 

  • Snoeijs P (1993) Intercalibration and distribution of diatom species in the Baltic Sea, vol 1. Opulus Press, Uppsala, 129 pp

    Google Scholar 

  • Snoeijs P, Balashova N (1998) Intercalibration and distribution of diatom species in the Baltic Sea, vol 5. Opulus Press, Uppsala, 144 pp

    Google Scholar 

  • Snoeijs P, Kasperoviciene J (1996) Intercalibration and distribution of diatom species in the Baltic Sea, vol 4. Opulus Press, Uppsala, 126 pp

    Google Scholar 

  • Snoeijs P, Potova M (1995) Intercalibration and distribution of diatom species in the Baltic Sea, vol 3. Opulus Press, Uppsala, 126 pp

    Google Scholar 

  • Snoeijs P, Vilbaste S (1994) Intercalibration and distribution of diatom species in the Baltic Sea, vol 2. Opulus Press, Uppsala, 126 pp

    Google Scholar 

  • Sonneman I, Sincock AJ, Fluin J et al (2000) An illustrated guide to the common stream diatom species from temperate Australia. The Cooperative Research Centre for Freshwater Ecology, Canberra, 166 pp

    Google Scholar 

  • Sullivan TJ, Charles DF, Bernert JA (1999) Relationship between landscape characteristics, history, and lakewater acidification in the Adirondack Mountains, New York. Water Air Soil Poll 112:407–427

    Article  CAS  Google Scholar 

  • Swetnam TW, Allen CD, Betancourt JL (1999) Applied historical ecology: using the past to manage for the future. Ecol Appl 9:1189–1206

    Article  Google Scholar 

  • Taffs KH, Farago LJ, Heijnis H et al (2008) A diatom-based Holocene record of human impact from a coastal environment: Tuckean Swamp, eastern Australia. J Paleolimnol 39:71–82

    Article  Google Scholar 

  • Tanigawa K, Hyodo M, Sato H (2013) Holocene relative sea-level change and rate of sea-level rise from coastal deposits in the Toyooka Basin, western Japan. Holocene 23:1039–1051

    Article  Google Scholar 

  • Telford RJ, Birks HJB (2011) A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages. Quat Sci Rev 30:1272–1278

    Article  Google Scholar 

  • Treguer P, Nelson DM, Vanbennekom AJ et al (1995) The silica balance in the world ocean—a reestimate. Science 268:375–379

    Article  CAS  Google Scholar 

  • van Beusekom JEE, Loebl M, Martens P (2009) Distant riverine nutrient supply and local temperature drive the long-term phytoplankton development in a temperate coastal basin. J Sea Res 61:26–33

    Article  Google Scholar 

  • Veres AJ, Pienitz R, Smol JP (1995) Lake water salinity and periphytic diatom succession in 2 sub-arctic lakes, Yukon Territory, Canada. Arctic 48:63–70

    Article  Google Scholar 

  • Vos PC, De Wolf H (1993) Diatoms as a tool for reconstructing sedimentary environments in coastal wetlands—methodological aspects. Hydrobiologia 269:285–296

    Article  Google Scholar 

  • Wachnicka A, Gaiser E, Collins L et al (2010) Distribution of diatoms and development of diatom-based models for inferring salinity and nutrient concentrations in Florida bay and adjacent coastal wetlands of South Florida (USA). Estuar Coast 33:1080–1098

    Article  CAS  Google Scholar 

  • Wachnicka A, Gaiser E, Boyer J (2011) Ecology and distribution of diatoms in Biscayne Bay, Florida (USA): implications for bioassessment and paleoenvironmental studies. Ecol Indic 11:622–632

    Article  CAS  Google Scholar 

  • Wachnicka A, Collins LS, Gaiser EE (2013) Response of diatom assemblages to 130 years of environmental change in Florida Bay (USA). J Paleolimnol 49:83–101

    Article  Google Scholar 

  • Weckström K (2006) Assessing recent eutrophication in coastal waters of the Gulf of Finland (Baltic Sea) using subfossil diatoms. J Paleolimnol 35:571–592

    Article  Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river systems. Academic, San Diego

    Google Scholar 

  • Witkowski A, Lange-Bertelot H, Metzeltin S (2000) Diatom flora of marine coasts 1, vol 7, Iconographia diatomologica. Koeltz Scientific Books, Königstein, 925 pp

    Google Scholar 

  • Zong Y, Lloyd JM, Leng MJ et al (2006) Reconstruction of Holocene monsoon history from the Pearl River Estuary, southern China, using diatoms and carbon isotope ratios. Holocene 16:251–263

    Article  Google Scholar 

  • Zong Y, Kemp AC, Yu F et al (2010a) Diatoms from the Pearl River estuary, China and their suitability as water salinity indicators for coastal environments. Mar Micropaleontol 75:38–49

    Article  Google Scholar 

  • Zong Y, Yu F, Huang G et al (2010b) The history of water salinity in the Pearl River estuary, China, during the Late Quaternary. Earth Surf Proc Land 35:1221–1233

    Article  CAS  Google Scholar 

  • Zong YQ, Huang KY, Yu FL et al (2012) The role of sea-level rise, monsoonal discharge and the paleo-landscape in the early Holocene evolution of the Pearl River delta, southern China. Quat Sci Rev 54:77–88

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the contribution of Dr. John Gibson for his vision and enthusiasm initiating this project, and his dedication and passion for the estuarine environment. We would like to acknowledge the input from the reviewers whose suggestions contributed to significantly improving the quality of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn H. Taffs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Taffs, K.H., Saunders, K.M., Logan, B. (2017). Diatoms as Indicators of Environmental Change in Estuaries. In: Weckström, K., Saunders, K., Gell, P., Skilbeck, C. (eds) Applications of Paleoenvironmental Techniques in Estuarine Studies. Developments in Paleoenvironmental Research, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0990-1_11

Download citation

Publish with us

Policies and ethics