Skip to main content

The Adaptive Immunity

  • Chapter
  • First Online:
Practical Immunodermatology
  • 921 Accesses

Abstract

Adaptive immunity develops during the lifetime of an organism as an adaptation to infection with certain pathogens, also referring to as the acquired immunity. Adaptive immune response is highly antigen specific, although it is relatively slow, it is highly efficient at antigen clearance, and therefore it is also termed as specific immunity. Immune cells participating in the adaptive immunity include T and B cells. T and B cells are activated after antigen recognition, followed by proliferation and differentiation that lead to the production of effector cells and molecules, which eventually clear foreign substances from the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paul WE. Fundamental immunology. 7th ed. Philadelphia: Wolters Kluwer Health/Lippincot Williams & Wilkins; 2012.

    Google Scholar 

  2. Murphy K. Janeway’s immunology. 8th ed. New York: Garland Science; 2011.

    Google Scholar 

  3. Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology. 6th ed. Philadelphia: Saunders; 2010.

    Google Scholar 

  4. Parslow TG, Stites DP, Terry AI, Imboden JB. Medical immunology. 10th ed. New York: McGraw-Hill/Appleton & Lange; 2001.

    Google Scholar 

  5. Sercarz EE, Maverakis E. Mhc-guided processing: binding of large antigen fragments. Nat Rev Immunol. 2003;3(8):621–9.

    Article  CAS  PubMed  Google Scholar 

  6. Wang JH, Reinherz EL. Structural basis of T cell recognition of peptides bound to MHC molecules. Mol Immunol. 2002;38(14):1039–49.

    Article  CAS  PubMed  Google Scholar 

  7. Zamoyska R. CD4 and CD8: modulators of T-cell receptor recognition of antigen and of immune responses? Curr Opin Immunol. 1998;10(1):82–7.

    Article  CAS  PubMed  Google Scholar 

  8. Gromme M, Neefjes J. Antigen degradation or presentation by MHC class I molecules via classical and non-classical pathways. Mol Immunol. 2002;39(3–4):181–202.

    Article  CAS  PubMed  Google Scholar 

  9. Williams A, Peh CA, Elliott T. The cell biology of MHC class I antigen presentation. Tissue Antigens. 2002;59(1):3–17.

    Article  CAS  PubMed  Google Scholar 

  10. Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature. 2000;404(6779):770–4.

    Article  CAS  PubMed  Google Scholar 

  11. Rock KL, York IA, Saric T, Goldberg AL. Protein degradation and the generation of MHC class I-presented peptides. Adv Immunol. 2002;80:1–70.

    Article  CAS  PubMed  Google Scholar 

  12. Villadangos JA. Presentation of antigens by MHC class II molecules: getting the most out of them. Mol Immunol. 2001;38(5):329–46.

    Article  CAS  PubMed  Google Scholar 

  13. Lennon-Dumenil AM, Bakker AH, Wolf-Bryant P, Ploegh HL, Lagaudriere-Gesbert C. A closer look at proteolysis and MHC-class-II-restricted antigen presentation. Curr Opin Immunol. 2002;14(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  14. Ackerman AL, Cresswell P. Cellular mechanisms governing cross-presentation of exogenous antigens. Nat Immunol. 2004;5(7):678–84.

    Article  CAS  PubMed  Google Scholar 

  15. Cooper AM. Cell-mediated immune responses in tuberculosis. Annu Rev Immunol. 2009;27:393–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaufmann SH. Tuberculosis vaccines: time to think about the next generation. Semin Immunol. 2013;25(2):172–81.

    Article  CAS  PubMed  Google Scholar 

  17. Stenger S, Hanson DA, Teitelbaum R, Dewan P, Niazi KR, Froelich CJ, et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science. 1998;282(5386):121–5.

    Article  CAS  PubMed  Google Scholar 

  18. Prezzemolo T, Guggino G, La Manna MP, Di Liberto D, Dieli F, Caccamo N. Functional signatures of human CD4 and CD8 T cell responses to mycobacterium tuberculosis. Front Immunol. 2014;5:180.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, et al. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med. 2003;198(4):557–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Joller N, Peters A, Anderson AC, Kuchroo VK. Immune checkpoints in central nervous system autoimmunity. Immunol Rev. 2012;248(1):122–39.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bour-Jordan H, Esensten JH, Martinez-Llordella M, Penaranda C, Stumpf M, Bluestone JA. Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/B7 family. Immunol Rev. 2011;241(1):180–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alegre ML, Noel PJ, Eisfelder BJ, Chuang E, Clark MR, Reiner SL, et al. Regulation of surface and intracellular expression of CTLA4 on mouse T cells. J Immunol. 1996;157(11):4762–70.

    CAS  PubMed  Google Scholar 

  23. Paterson AM, Vanguri VK, Sharpe AH. SnapShot: B7/CD28 costimulation. Cell. 2009;137(5):974–4.e1.

    Article  CAS  PubMed  Google Scholar 

  24. Walunas TL, Bakker CY, Bluestone JA. CTLA-4 ligation blocks CD28-dependent T cell activation. J Exp Med. 1996;183(6):2541–50.

    Article  CAS  PubMed  Google Scholar 

  25. Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med. 1991;174(3):561–9.

    Article  CAS  PubMed  Google Scholar 

  26. Eyerich S, Eyerich K, Pennino D, Carbone T, Nasorri F, Pallotta S, et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest. 2009;119(12):3573–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wuthrich M, Deepe Jr GS, Klein B. Adaptive immunity to fungi. Annu Rev Immunol. 2012;30:115–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sie C, Korn T, Mitsdoerffer M. Th17 cells in central nervous system autoimmunity. Exp Neurol. 2014; 262(A):18-27.

    Google Scholar 

  29. Bouchery T, Kyle R, Ronchese F, Le Gros G. The differentiation of CD4(+) T-helper cell subsets in the context of Helminth parasite infection. Front Immunol. 2014;5:487.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J, et al. Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol. 2008;9(12):1341–6.

    Article  CAS  PubMed  Google Scholar 

  31. Schmitt E, Beuscher HU, Huels C, Monteyne P, van Brandwijk R, van Snick J, et al. IL-1 serves as a secondary signal for IL-9 expression. J Immunol. 1991;147(11):3848–54.

    CAS  PubMed  Google Scholar 

  32. Schmitt E, Germann T, Goedert S, Hoehn P, Huels C, Koelsch S, et al. IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF-beta and IL-4, and is inhibited by IFN-gamma. J Immunol. 1994;153(9):3989–96.

    CAS  PubMed  Google Scholar 

  33. Uyttenhove C, Brombacher F, Van Snick J. TGF-beta interactions with IL-1 family members trigger IL-4-independent IL-9 production by mouse CD4(+) T cells. Eur J Immunol. 2010;40(8):2230–5.

    Article  CAS  PubMed  Google Scholar 

  34. Schmitt E, Klein M, Bopp T. Th9 cells, new players in adaptive immunity. Trends Immunol. 2014;35(2):61–8.

    Article  CAS  PubMed  Google Scholar 

  35. Purwar R, Schlapbach C, Xiao S, Kang HS, Elyaman W, Jiang X, et al. Robust tumor immunity to melanoma mediated by interleukin-9-producing T cells. Nat Med. 2012;18(8):1248–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu Y, Hong S, Li H, Park J, Hong B, Wang L, et al. Th9 cells promote antitumor immune responses in vivo. J Clin Invest. 2012;122(11):4160–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lo Re S, Lison D, Huaux F. CD4+ T lymphocytes in lung fibrosis: diverse subsets, diverse functions. J Leukoc Biol. 2013;93(4):499–510.

    Article  CAS  PubMed  Google Scholar 

  38. Kerzerho J, Maazi H, Speak AO, Szely N, Lombardi V, Khoo B, et al. Programmed cell death ligand 2 regulates TH9 differentiation and induction of chronic airway hyperreactivity. J Allergy Clin Immunol. 2013;131(4):1048–57, 57 e1–2.

    Article  CAS  PubMed  Google Scholar 

  39. Duhen T, Geiger R, Jarrossay D, Lanzavecchia A, Sallusto F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol. 2009;10(8):857–63.

    Article  CAS  PubMed  Google Scholar 

  40. Ramirez JM, Brembilla NC, Sorg O, Chicheportiche R, Matthes T, Dayer JM, et al. Activation of the aryl hydrocarbon receptor reveals distinct requirements for IL-22 and IL-17 production by human T helper cells. Eur J Immunol. 2010;40(9):2450–9.

    Article  CAS  PubMed  Google Scholar 

  41. Veldhoen M, Hirota K, Christensen J, O’Garra A, Stockinger B. Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J Exp Med. 2009;206(1):43–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat Immunol. 2009;10(8):864–71.

    Article  CAS  PubMed  Google Scholar 

  43. Nograles KE, Zaba LC, Guttman-Yassky E, Fuentes-Duculan J, Suarez-Farinas M, Cardinale I, et al. Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. Br J Dermatol. 2008;159(5):1092–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Res PC, Piskin G, de Boer OJ, van der Loos CM, Teeling P, Bos JD, et al. Overrepresentation of IL-17A and IL-22 producing CD8 T cells in lesional skin suggests their involvement in the pathogenesis of psoriasis. PLoS One. 2010;5(11):e14108.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fujita H. The role of IL-22 and Th22 cells in human skin diseases. J Dermatol Sci. 2013;72(1):3–8.

    Article  CAS  PubMed  Google Scholar 

  46. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, et al. Conversion of peripheral CD4 + CD25- naive T cells to CD4 + CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003;198(12):1875–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abdoli R, Najafian N. T helper cells fate mapping by co-stimulatory molecules and its functions in allograft rejection and tolerance. Int J Organ Transplant Med. 2014;5(3):97–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Campbell DJ, Koch MA. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat Rev Immunol. 2011;11(2):119–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ohl K, Tenbrock K. Regulatory T cells in systemic lupus erythematosus. Eur J Immunol. 2014;45:344–55.

    Article  PubMed  Google Scholar 

  50. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med. 2000;192(2):303–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Thornton AM, Shevach EM. CD4 + CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med. 1998;188(2):287–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McNally A, Hill GR, Sparwasser T, Thomas R, Steptoe RJ. CD4 + CD25+ regulatory T cells control CD8+ T-cell effector differentiation by modulating IL-`omeostasis. Proc Natl Acad Sci U S A. 2011;108(18):7529–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lim HW, Hillsamer P, Banham AH, Kim CH. Cutting edge: direct suppression of B cells by CD4+ CD25+ regulatory T cells. J Immunol. 2005;175(7):4180–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sun, H., Sun, C., Tian, Z. (2017). The Adaptive Immunity. In: Gao, XH., Chen, HD. (eds) Practical Immunodermatology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0902-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-0902-4_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-0900-0

  • Online ISBN: 978-94-024-0902-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics