Skip to main content

Neoplasms

  • Chapter
  • First Online:
Practical Immunodermatology

Abstract

Melanoma is a malignant tumor that arises from melanocytes and has a high potential to metastasize. Melanoma represents less than 2 % of total skin cancer diagnoses, but accounts for an overwhelming proportion of skin cancer deaths. The incidence of melanoma has been increasing in the past 30 years. Between 2006 and 2010, the incidence rate increased by 2.7 % per year. In 2014, the American Cancer Society reported estimated 76,100 new cases of melanoma in the United States and 9710 cases of melanoma mortality [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Melanoma Immunology and Immune Therapy

  1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.

    Article  PubMed  Google Scholar 

  2. Burnet FM. The concept of immunological surveillance. Prog Exp Tumor Res. 1970;13:1–27.

    Article  CAS  PubMed  Google Scholar 

  3. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O’Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, DeFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446:153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miller DM, Flaherty KT, Tsao H. Current status and future directions of molecularly targeted therapies and immunotherapies for melanoma. Semin Cutan Med Surg. 2014;33:60–7.

    Article  PubMed  Google Scholar 

  5. Bruttel VS, Wischhusen J. Cancer stem cell immunology: key to understanding tumorigenesis and tumor immune escape? Front Immunol. 2014;5:360.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Nestle FO, Burg G, Dummer R. New perspectives on immunobiology and immunotherapy of melanoma. Immunol Today. 1999;20:5–7.

    Article  CAS  PubMed  Google Scholar 

  7. Mukherji B. Immunology of melanoma. Clin Dermatol. 2013;31:156–65.

    Article  PubMed  Google Scholar 

  8. Traversari C, van der Bruggen P, Luescher IF, Lurquin C, Chomez P, Van Pel A, De Plaen E, Amar-Costesec A, Boon T. A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J Exp Med. 1992;176:1453–7.

    Article  CAS  PubMed  Google Scholar 

  9. Tsuchida T, Saxton RE, Morton DL, Irie RF. Gangliosides of human melanoma. Cancer. 1989;63:1166–74.

    Article  CAS  PubMed  Google Scholar 

  10. Livingston PO. Approaches to augmenting the immunogenicity of melanoma gangliosides: from whole melanoma cells to ganglioside – KLH conjugate vaccines. Immunol Rev. 1995;145:147–66.

    Article  CAS  PubMed  Google Scholar 

  11. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol. 2000;74:181–273.

    Article  CAS  PubMed  Google Scholar 

  12. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Petrella T, Quirt I, Verma S, Haynes AE, Charette M, Bak K. Single – agent interleukin-2 in the treatment of metastatic melanoma: a systematic review. Cancer Treat Rev. 2007;33:484–96.

    Article  CAS  PubMed  Google Scholar 

  14. Lens M. The role of vaccine therapy in the treatment of melanoma. Expert Opin Biol Ther. 2008;8:315–23.

    Article  CAS  PubMed  Google Scholar 

  15. Kirkwood JM, Lee S, Moschos SJ, Albertini MR, Michalak JC, Sander C, Whiteside T, Butterfield LH, Weiner L. Immunogenicity and antitumor effects of vaccination with peptide vaccine ± granulocyte – monocyte colony – stimulating factor and/or IFN – alpha2b in advanced metastatic melanoma: Eastern Cooperative Oncology Group Phase II Trial E1696. Clin cancer Res : off J Am Ass Cancer Res. 2009;15:1443–51.

    Article  CAS  Google Scholar 

  16. Shin DS, Ribas A. The evolution of checkpoint blockade as a cancer therapy: what’s here, what’s next? Curr Opin Immunol. 2015;33C:23–35.

    Article  CAS  Google Scholar 

  17. van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anti – cytotoxic T lymphocyte – associated antigen 4 (CTLA-4) and granulocyte/macrophage colony – stimulating factor (GM – CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med. 1999;190:355–66.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, Davidson N, Richards J, Maio M, Hauschild A, Miller Jr WH, Gascon P, Lotem M, Harmankaya K, Ibrahim R, Francis S, Chen TT, Humphrey R, Hoos A, Wolchok JD. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26.

    Article  CAS  PubMed  Google Scholar 

  20. Camacho LH, Antonia S, Sosman J, Kirkwood JM, Gajewski TF, Redman B, Pavlov D, Bulanhagui C, Bozon VA, Gomez-Navarro J, Ribas A. Phase I/II trial of tremelimumab in patients with metastatic melanoma. J clin oncol : off J Am Soc Clin Oncol. 2009;27:1075–81.

    Article  CAS  Google Scholar 

  21. Ribas A, Kefford R, Marshall MA, Punt CJ, Haanen JB, Marmol M, Garbe C, Gogas H, Schachter J, Linette G, Lorigan P, Kendra KL, Maio M, Trefzer U, Smylie M, McArthur GA, Dreno B, Nathan PD, Mackiewicz J, Kirkwood JM, Gomez-Navarro J, Huang B, Pavlov D, Hauschild A. Phase III randomized clinical trial comparing tremelimumab with standard – of – care chemotherapy in patients with advanced melanoma. J clin oncol : off J Am Soc Clin Oncol. 2013;31:616–22.

    Article  CAS  Google Scholar 

  22. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.

    Article  CAS  PubMed  Google Scholar 

  23. Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity. 2007;27:111–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L. Tumor – associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8:793–800.

    Article  CAS  PubMed  Google Scholar 

  25. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, Weber JS, Joshua AM, Hwu WJ, Gangadhar TC, Patnaik A, Dronca R, Zarour H, Joseph RW, Boasberg P, Chmielowski B, Mateus C, Postow MA, Gergich K, Elassaiss-Schaap J, Li XN, Iannone R, Ebbinghaus SW, Kang SP, Daud A. Anti – programmed – death – receptor-1 treatment with pembrolizumab in ipilimumab – refractory advanced melanoma: a randomised dose – comparison cohort of a phase 1 trial. Lancet. 2014;384:1109–17.

    Article  CAS  PubMed  Google Scholar 

  27. Topalian SL, Sznol M, McDermott DF, Kluger HM, Carvajal RD, Sharfman WH, Brahmer JR, Lawrence DP, Atkins MB, Powderly JD, Leming PD, Lipson EJ, Puzanov I, Smith DC, Taube JM, Wigginton JM, Kollia GD, Gupta A, Pardoll DM, Sosman JA, Hodi FS. Survival, durable tumor remission, and long – term safety in patients with advanced melanoma receiving nivolumab. J clin oncol : off J Am Soc Clin Oncol. 2014;32:1020–30.

    Article  CAS  Google Scholar 

  28. Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, Chen L, Pardoll DM, Topalian SL, Anders RA. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin cancer Res : off J Am Ass Cancer Res. 2014;20:5064–74.

    Article  CAS  Google Scholar 

  29. Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA, Rogers LJ, Gracia GJ, Jones SA, Mangiameli DP, Pelletier MM, Gea-Banacloche J, Robinson MR, Berman DM, Filie AC, Abati A, Rosenberg SA. Adoptive cell transfer therapy following non – myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J clin oncol: off J Am Soc Clin Oncol. 2005;23:2346–57.

    Google Scholar 

  30. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, Robbins PF, Huang J, Citrin DE, Leitman SF, Wunderlich J, Restifo NP, Thomasian A, Downey SG, Smith FO, Klapper J, Morton K, Laurencot C, White DE, Rosenberg SA. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J clin oncol : off J Am Soc Clin Oncol. 2008;26:5233–9.

    Article  CAS  Google Scholar 

Keloids

  1. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453(7193):314–21.

    Article  CAS  PubMed  Google Scholar 

  2. Chike-Obi CJ, Cole PD, Brissett AE. Keloids: pathogenesis, clinical features, and management. Semin Plast surg. 2009;23(3):178–84.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sayah DN, Soo C, Shaw WW, Watson J, Messadi D, Longaker MT, Zhang X, Ting K. Downregulation of apoptosis – related genes in keloid tissues. J Surg Res. 1999;87(2):209–16.

    Article  CAS  PubMed  Google Scholar 

  4. Liu Y, Yang D, Xiao Z, Zhang M. miRNA expression profiles in keloid tissue and corresponding normal skin tissue. Aesthetic Plast Surg. 2012;36(1):193–201.

    Article  PubMed  Google Scholar 

  5. Kashiyama K, Mitsutake N, Matsuse M, Ogi T, Saenko VA, Ujifuku K, Utani A, Hirano A, Yamashita S. miR-196a downregulation increases the expression of type I and III collagens in keloid fibroblasts. J Invest Dermatol. 2012;132(6):1597–604.

    Article  CAS  PubMed  Google Scholar 

  6. Bloom D. Heredity of keloids; review of the literature and report of a family with multiple keloids in five generations. N Y State J Med. 1956;56(4):511–9.

    CAS  PubMed  Google Scholar 

  7. Akoz T, Gideroglu K, Akan M. Combination of different techniques for the treatment of earlobe keloids. Aesthetic Plast Surg. 2002;26(3):184–8.

    Article  PubMed  Google Scholar 

  8. Marneros AG, Krieg T. Keloids – clinical diagnosis, pathogenesis, and treatment options. J Dtsch Dermatol Ges. 2004;2(11):905–13.

    Article  PubMed  Google Scholar 

  9. Marneros AG, Norris JE, Watanabe S, Reichenberger E, Olsen BR. Genome scans provide evidence for keloid susceptibility loci on chromosomes 2q23 and 7p11. J Invest Dermatol. 2004;122(5):1126–32.

    Article  CAS  PubMed  Google Scholar 

  10. Nakashima M, Chung S, Takahashi A, Kamatani N, Kawaguchi T, Tsunoda T, Hosono N, Kubo M, Nakamura Y, Zembutsu H. A genome – wide association study identifies four susceptibility loci for keloid in the Japanese population. Nat Genet. 2010;42(9):768–71.

    Article  CAS  PubMed  Google Scholar 

  11. Rossi A, Bozzi M. [HLA and keloids: antigenic frequency and therapeutic response]. G Ital Dermatol Venereol. 1989;124(7–8):341–4.

    CAS  PubMed  Google Scholar 

  12. Kischer CW, Shetlar MR, Shetlar CL, Chvapil M. Immunoglobulins in hypertrophic scars and keloids. Plast Reconstr Surg. 1983;71(6):821–5.

    Article  CAS  PubMed  Google Scholar 

  13. Kazeem AA. The immunological aspects of keloid tumor formation. J Surg Oncol. 1988;38(1):16–8.

    Article  CAS  PubMed  Google Scholar 

  14. Santucci M, Borgognoni L, Reali UM, Gabbiani G. Keloids and hypertrophic scars of caucasians show distinctive morphologic and immunophenotypic profiles. Virchows Arch : Int J pathol. 2001;438(5):457–63.

    Article  CAS  Google Scholar 

  15. Niessen FB, Schalkwijk J, Vos H, Timens W. Hypertrophic scar formation is associated with an increased number of epidermal Langerhans cells. J Pathol. 2004;202(1):121–9.

    Article  PubMed  Google Scholar 

  16. Smith CJ, Smith JC, Finn MC. The possible role of mast cells (allergy) in the production of keloid and hypertrophic scarring. J Burn Care Rehabil. 1987;8(2):126–31.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Q, Oh CK, Messadi DV, Duong HS, Kelly AP, Soo C, Wang L, Le AD. Hypoxia – induced HIF-1 alpha accumulation is augmented in a co – culture of keloid fibroblasts and human mast cells: involvement of ERK1/2 and PI-3K/Akt. Exp Cell Res. 2006;312(2):145–55.

    Article  CAS  PubMed  Google Scholar 

  18. Eishi K, Bae SJ, Ogawa F, Hamasaki Y, Shimizu K, Katayama I. Silicone gel sheets relieve pain and pruritus with clinical improvement of keloid: possible target of mast cells. J Dermatolog Treat. 2003;14(4):248–52.

    Article  CAS  PubMed  Google Scholar 

  19. Seifert O, Mrowietz U. Keloid scarring: bench and bedside. Arch Dermatol Res. 2009;301(4):259–72.

    Article  PubMed  Google Scholar 

  20. Bayat A, Arscott G, Ollier WE, Ferguson MW, Mc Grouther DA. Description of site – specific morphology of keloid phenotypes in an Afrocaribbean population. Br J Plast Surg. 2004;57(2):122–33.

    Article  CAS  PubMed  Google Scholar 

  21. Poochareon VN, Berman B. New therapies for the management of keloids. J Craniofac Surg. 2003;14(5):654–7.

    Article  PubMed  Google Scholar 

  22. Chen MA, Davidson TM. Scar management: prevention and treatment strategies. Curr Opin Otolaryngol Head Neck Surg. 2005;13(4):242–7.

    Article  PubMed  Google Scholar 

  23. Mustoe TA, Cooter RD, Gold MH, Hobbs FD, Ramelet AA, Shakespeare PG, Stella M, Teot L, Wood FM, Ziegler UE. International clinical recommendations on scar management. Plast Reconstr Surg. 2002;110(2):560–71.

    Article  PubMed  Google Scholar 

  24. Kelly AP. Medical and surgical therapies for keloids. Dermatol Ther. 2004;17(2):212–8.

    Article  PubMed  Google Scholar 

  25. Alster TS, Tanzi EL. Hypertrophic scars and keloids: etiology and management. Am J Clin Dermatol. 2003;4(4):235–43.

    Article  PubMed  Google Scholar 

  26. Jacob SE, Berman B, Nassiri M, Vincek V. Topical application of imiquimod 5% cream to keloids alters expression genes associated with apoptosis. Br J Dermatol. 2003;149 Suppl 66:62–5.

    Article  CAS  PubMed  Google Scholar 

  27. Bilu D, Sauder DN. Imiquimod: modes of action. Br J Dermatol. 2003;149 Suppl 66:5–8.

    PubMed  Google Scholar 

  28. Berman B, Flores F. Recurrence rates of excised keloids treated with postoperative triamcinolone acetonide injections or interferon alfa-2b injections. J Am Acad Dermatol. 1997;37(5 Pt 1):755–7.

    Article  CAS  PubMed  Google Scholar 

  29. Wendling J, Marchand A, Mauviel A, Verrecchia F. 5-fluorouracil blocks transforming growth factor – beta – induced alpha 2 type I collagen gene (COL1A2) expression in human fibroblasts via c – Jun NH2-terminal kinase/activator protein-1 activation. Mol Pharmacol. 2003;64(3):707–13.

    Article  CAS  PubMed  Google Scholar 

  30. Liu A, Moy RL, Ozog DM. Current methods employed in the prevention and minimization of surgical scars. Dermatol Surg : off Pub Am Soc for Dermatol Surg. 2011;37(12):1740–6.

    Article  CAS  Google Scholar 

  31. Borok TL, Bray M, Sinclair I, Plafker J, LaBirth L, Rollins C. Role of ionizing irradiation for 393 keloids. Int J Radiat Oncol Biol Phys. 1988;15(4):865–70.

    Article  CAS  PubMed  Google Scholar 

  32. Ehrlich HP, Desmouliere A, Diegelmann RF, Cohen IK, Compton CC, Garner WL, Kapanci Y, Gabbiani G. Morphological and immunochemical differences between keloid and hypertrophic scar. Am J Pathol. 1994;145(1):105–13.

    CAS  PubMed  PubMed Central  Google Scholar 

Squamous Cell Carcinoma (SCC)

  1. Edge SB, Byrd DR, Compton CC, et al. Cutaneous squamous cell carcinoma and other cutaneous carcinomas. In: AJCC cancer staging manual. Springer, Berlin 2010.

    Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2015;65:5–29.

    Article  PubMed  Google Scholar 

  3. Rogers HW, Weinstock MA, Harris AR, Hinckley MR, et al. Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch Dermatol. 2010;146:283–7.

    Article  PubMed  Google Scholar 

  4. Diepgen T l, Mahler V. The epidemiology of skin cancer. Br J Dermatol. 2002;146:1–6.

    Article  PubMed  Google Scholar 

  5. Adams CC, Thomas B, Bingham JL. Cutaneous squamous cell carcinoma with perineural invasion: a case report and review of the literature. Cutis. 2014;93:141–4.

    PubMed  Google Scholar 

  6. Rowe DE, Carroll RJ, Day CL. Prognostic factors for local recurrence, metastasis, and survival rates in squamous cell carcinoma of the skin, ear, and lip. Implications for treatment modality selection. J Am Acad Dermatol. 1992;26:976–90.

    Article  CAS  PubMed  Google Scholar 

  7. Jambusaria-Pahlajani A, et al. Evaluation of AJCC tumor staging for cutaneous squamous cell carcinoma and a proposed alternative tumor staging system. JAMA Dermatol. 2013;149:402–10.

    Article  CAS  PubMed  Google Scholar 

  8. Brougham NDLS, Dennett ER, Cameron R, Tan ST. The incidence of metastasis from cutaneous squamous cell carcinoma and the impact of its risk factors. J Surg Oncol. 2012;106:811–5.

    Article  PubMed  Google Scholar 

  9. Brougham NDL, Tan ST. The incidence and risk factors of metastasis for cutaneous squamous cell carcinoma – implications on the T – classification system. J Surg Oncol. 2014;110:876–82.

    Article  PubMed  Google Scholar 

  10. Chen JG, et al. Cost of nonmelanoma skin cancer treatment in the United States. Dermatol Surg. 2001;27:1035–8.

    CAS  PubMed  Google Scholar 

  11. Mudigonda T, Pearce DJ, Yentzer BA, Williford P, Feldman SR. The economic impact of non – melanoma skin cancer: a review. J Natl Compr Canc Netw. 2010;8:888–96.

    Article  PubMed  Google Scholar 

  12. Housman TS, et al. Skin cancer is among the most costly of all cancers to treat for the medicare population. J Am Acad Dermatol. 2003;48:425–9.

    Article  PubMed  Google Scholar 

  13. Xiang F, Lucas R, Hales S, Neale R. Incidence of nonmelanoma skin cancer in relation to ambient UV radiation in white populations, 1978–2012: empirical relationships. JAMA Dermatol. 2014;150:1063–71.

    Article  PubMed  Google Scholar 

  14. Brougham NDL, Dennett ER, Tan ST. Non – melanoma skin cancers in New Zealand – a neglected problem. N Z Med J. 2010;123:59–65.

    PubMed  Google Scholar 

  15. Hoy WE. Nonmelanoma skin carcinoma in albuquerque, New Mexico: experience of a major health care provider. Cancer. 1996;77:2489–95.

    Article  CAS  PubMed  Google Scholar 

  16. Freeman SE, et al. Wavelength dependence of pyrimidine dimer formation in DNA of human skin irradiated in situ with ultraviolet light. Proc Natl Acad Sci U S A. 1989;86:5605–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kripke ML. Immunologic mechanisms in UV radiation carcinogenesis. Adv Cancer Res. 1981;34:69–106.

    Article  CAS  PubMed  Google Scholar 

  18. Ayli EE, et al. Activation of Src – family tyrosine kinases in hyperproliferative epidermal disorders. J Cutan Pathol. 2008;35:273–7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jost M, Kari C, Rodeck U. The EGF receptor – an essential regulator of multiple epidermal functions. Eur J Dermatol. 2000;10:505–10.

    CAS  PubMed  Google Scholar 

  20. Kalyankrishna S, Grandis JR. Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol. 2006;24:2666–72.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao L, et al. Srcasm inhibits Fyn – induced cutaneous carcinogenesis with modulation of Notch1 and p53. Cancer Res. 2009;69:9439–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kolev V, et al. EGFR signalling as a negative regulator of Notch1 gene transcription and function in proliferating keratinocytes and cancer. Nat Cell Biol. 2008;10:902–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lefort K, Dotto GP. Notch signaling in the integrated control of keratinocyte growth/differentiation and tumor suppression. Semin Cancer Biol. 2004;14:374–86.

    Article  CAS  PubMed  Google Scholar 

  24. Lefort K, et al. Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. Genes Dev. 2007;21:562–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boukamp P. Non – melanoma skin cancer: what drives tumor development and progression? Carcinogenesis. 2005;26:1657–67.

    Article  CAS  PubMed  Google Scholar 

  26. Kripke ML, Fisher MS. Immunologic parameters of ultravioletcarcinogenesis. J Natl Cancer lnst. 1976;57:211–5.

    Article  CAS  Google Scholar 

  27. Kripke ML, Morison WL. Modulation of immune function by UV radiation. J Invest Dermatol. 1985;85:62s–5.

    Article  CAS  PubMed  Google Scholar 

  28. Ratushny V, Gober MD, Hick R, Ridky TW, Seykora JT. From keratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma. J Clin Invest. 2012;122:464–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brash DE, et al. A role for sunlight in skin cancer: UV induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci U S A. 1991;88(22):10124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kubo Y, et al. p53 gene mutations in human skin cancers and precancerous lesions: comparison with immunohistochemical analysis. J Invest Dermatol. 1994;102(4):440–4.

    Article  CAS  PubMed  Google Scholar 

  31. Khavari PA. Modelling cancer in human skin tissue. Nat Rev Cancer. 2006;6:270–80.

    Article  CAS  PubMed  Google Scholar 

  32. Ziegler A, et al. Sunburn and p53 in the onset of skin cancer. Nature. 1994;372:773–6.

    Article  CAS  PubMed  Google Scholar 

  33. Pierceall WE, Goldberg LH, Tainsky MA, Mukhopadhyay T, Ananthaswamy HN. Ras gene mutation and amplification in human nonmelanoma skin cancers. Mol Carcinog. 1991;4:196–202.

    Article  CAS  PubMed  Google Scholar 

  34. Kwa RE, Campana K, Moy RL. Biology of cutaneous squamous cell carcinoma. J Am Acad Dermatol. 1992;26:1–26.

    Article  CAS  PubMed  Google Scholar 

  35. Hannuksela-Svahn A, Pukkala E, Karvonen J. Basal cell skin carcinoma and other nonmelanoma skin cancers in Finland from 1956 through 1995. Arch Dermatol. 1999;135:781–6.

    Article  CAS  PubMed  Google Scholar 

  36. Harwood CA, et al. Human papillomavirus infection and non – melanoma skin cancer in immunosuppressed and immunocompetent individuals. J Med Virol. 2000;61:289–97.

    Article  CAS  PubMed  Google Scholar 

  37. Jensen P, et al. Skin cancer in kidney and heart transplant recipients and different long – term immunosuppressive therapy regimens. J Am Acad Dermatol. 1999;40:177–86.

    Article  CAS  PubMed  Google Scholar 

  38. Euvrard S, Ulrich C, Lefrancois N. Immunosuppressants and skin cancer in transplant patients: focus on rapamycin. Dermatol Surg. 2004;30:628–33.

    PubMed  Google Scholar 

  39. Euvrard S, et al. Comparative epidemiologic study of premalignant and malignant epithelial cutaneous lesions developing after kidney and heart transplantation. J Am Acad Dermatol. 1995;33:222–9.

    Article  CAS  PubMed  Google Scholar 

  40. Dantal J, et al. Effect of long – term immunosuppression in kidney – graft recipients on cancer incidence: randomised comparison of two cyclosporin regimens. Lancet. 1998;351:623–8.

    Article  CAS  PubMed  Google Scholar 

  41. Tanaka T, et al. A novel immunosuppressive drug, FTY720, prevents the cancer progression induced by cyclosporine. Cancer Lett. 2002;181:165–71.

    Article  CAS  PubMed  Google Scholar 

  42. Wu X, et al. Opposing roles for calcineurin and ATF3 in squamous skin cancer. Nature. 2010;465:368–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yakupoglu YK, Buell JF, Woodle S, Kahan BD. Individualization of immunosuppressive therapy.III sirolimus associated with a reduced incidence of malignancy. Transplant Proc. 2006;38:358–61.

    Article  CAS  PubMed  Google Scholar 

  44. Mathew T, Kreis H, Friend P. Two – year incidence of malignancy in sirolimus – treated renal transplant recipients: results from five multicenter studies. Clin Transplant. 2004;18:446–9.

    Article  PubMed  Google Scholar 

  45. Hofbauer GFL, Bouwes Bavinck JN, Euvrard S. Organ transplantation and skin cancer: basic problems and new perspectives. Exp Dermatol. 2010;19:473–82.

    Article  PubMed  Google Scholar 

  46. Derancourt C, et al. Oncogenic human papillomaviruses in extra – genital Bowen disease revealed by in situ hybridization. Ann Dermatol Venereol. 2001;128:715–8.

    CAS  PubMed  Google Scholar 

  47. Zheng S, et al. Human papillomaviruses of the mucosal type are present in some cases of extragenital Bowen’s disease. Br J Dermatol. 2005;152:1243–7.

    Article  CAS  PubMed  Google Scholar 

  48. Meyer T, Arndt R, Christophers E, Nindl I, Stockfleth E. Importance of human papillomaviruses for the development of skin cancer. Cancer Detect Prev. 2001;25:533–47.

    CAS  PubMed  Google Scholar 

  49. De Jong-Tieben LM, et al. High frequency of detection of epidermodysplasia verruciformis – associated human papillomavirus DNA in biopsies from malignant and premalignant skin lesions from renal transplant recipients. J Invest Dermatol. 1995;105:367–71.

    Article  PubMed  Google Scholar 

  50. Feltkamp MCW, de Koning MNC, Bavinck JNB, ter Schegget J. Betapapillomaviruses: Innocent bystanders or causes of skin cancer. J Clin Virol. 2008;43:353–60.

    Article  CAS  PubMed  Google Scholar 

  51. Bavinck JNB, Plasmeijer EI, Feltkamp MCW. β – Papillomavirus Infection and Skin Cancer. J Invest Dermatol. 2008;128:1355–8.

    Article  CAS  Google Scholar 

  52. Bahner JD, Bordeaux JS. Non – melanoma skin cancers: photodynamic therapy, cryotherapy, 5-fluorouracil, imiquimod, diclofenac, or what?Facts and controversies. Clin Dermatol. 2013;31:792–8.

    Article  PubMed  Google Scholar 

  53. Lansbury L, Bath-Hextall F, Perkins W, Stanton W, Leonardi-Bee J. Interventions for non – metastatic squamous cell carcinoma of the skin: systematic review and pooled analysis of observational studies. BMJ. 2013;347:f6153.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kuflik EG. Cryosurgery for skin cancer: 30-year experience and cure rates. Dermatol Surg. 2004;30:297–300.

    PubMed  Google Scholar 

  55. Green A, et al. Daily sunscreen application and betacarotene supplementation in prevention of basal – cell and squamous – cell carcinomas of the skin: a randomised controlled trial. Lancet. 1999;354:723–9.

    Article  CAS  PubMed  Google Scholar 

  56. Thompson SC, Jolley D, Marks R. Reduction of solar keratoses by regular sunscreen use. N Engl J Med. 1993;329:1147–51.

    Article  CAS  PubMed  Google Scholar 

  57. Harvey DT, Taylor RS, Itani KM, Loewinger RJ. Mohs micrographic surgery of the eyelid: an overview of anatomy, pathophysiology, and reconstruction options. Dermatol Surg. 2013;39:673–97.

    Article  CAS  PubMed  Google Scholar 

  58. Belkin D, Carucci JA. Mohs surgery for squamous cell carcinoma. Dermatol Clin. 2011;29:161–74.

    Article  CAS  PubMed  Google Scholar 

  59. Task Force AH, et al. AAD/ACMS/ASDSA/ASMS 2012 appropriate use criteria for mohs micrographic surgery: a report of the American academy of dermatology, American college of mohs surgery, American society for dermatologic surgery association, and the American society for mohs surgery. J Am Acad Dermatol. 2012;67(531–550).

    Google Scholar 

  60. Pugliano-Mauro M, Goldman G. Mohs surgery is effective for high – risk cutaneous squamous cell carcinoma. Dermatol Surg. 2010;36:1544–53.

    Article  CAS  PubMed  Google Scholar 

  61. Sakaguchi S, et al. Immunologic self tolerance maintained by T – cell – mediated control of self – reactive T cells: implications for autoimmunity and tumor immunity. Microbes Infect. 2001;3:911–8.

    Article  CAS  PubMed  Google Scholar 

  62. Perrotta RE, Giordano M, Malaguarnera M. Non – melanoma skin cancers in elderly patients. Crit Rev Oncol Hematol. 2011;80:474–80.

    Article  PubMed  Google Scholar 

  63. Elmets CA, Athar M. Milestones in photocarcinogenesis. Nat Milestones. 2013:E13–7. doi:10.1038/skinbio.2013.179.

  64. Grossman D, Leffell DJ. The molecular basis of nonmelanoma skin cancer: new understanding. Arch Dermatol. 1997;133:1263–70.

    Article  CAS  PubMed  Google Scholar 

  65. Loser K, et al. IL-10 controls ultraviolet – induced carcinogenesis in mice. J Immunol. 2007;179:365–71.

    Article  CAS  PubMed  Google Scholar 

  66. Shreedhar V, Giese T, Sung VW, Ullrich SE. A cytokine cascade including prostaglandin E2, IL-4, and IL-10 is responsible for UV – induced systemic immune suppression. J Immunol. 1998;160:3783–9.

    CAS  PubMed  Google Scholar 

  67. Steinbrink K, et al. Interleukin-10-treated human dendritic cells induce a melanoma – antigen – specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood. 1999;93:1634–42.

    CAS  PubMed  Google Scholar 

  68. Beissert S, Hosoi J, Grabbe S, Asahina A, Granstein RD. IL-10 inhibits tumor antigen presentation by epidermal antigen – presenting cells. J Immunol. 1995;154:1280–6.

    CAS  PubMed  Google Scholar 

  69. Simon JC, Cruz PD, Bergstresser PR, Tigelaar RE. Low dose ultraviolet B-irradiated Langerhans cells preferentially activate CD4+ cells of the T helper 2 subset. J Immunol. 1990;145:2087–91.

    CAS  PubMed  Google Scholar 

  70. Meeran SM, Mantena SK, Meleth S, Elmets CA, Katiyar SK. Interleukin-12-deficient mice are at greater risk of UV radiation – induced skin tumors and malignant transformation of papillomas to carcinomas. Mol Cancer Ther. 2006;5:825–32.

    Article  CAS  PubMed  Google Scholar 

  71. Halak BK, Maguire HC, Lattime EC. Tumor – induced interleukin-10 inhibits type 1 immune responses directed at a tumor antigen as well as a non – tumor antigen present at the tumor site. Cancer Res. 1999;59:911–7.

    CAS  PubMed  Google Scholar 

  72. Kim J, et al. IL-10 production in cutaneous basal and squamous cell carcinomas A mechanism for evading the local T cell immune response. J Immunol. 1995;155:2240–7.

    CAS  PubMed  Google Scholar 

  73. Chen W, et al. Conversion of peripheral CD4 + CD25- naive T cells to CD4 + CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003;198:1875–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cederbom L, Hall H, Ivars F. CD4 + CD25+ regulatory T cells down – regulate co – stimulatory molecules on antigen – presenting cells. Eur J Immunol. 2000;30:1538–43.

    Article  CAS  PubMed  Google Scholar 

  75. Shevach EM, McHugh RS, Piccirillo CA, Thornton AM. Control of T-cell activation by CD4+ CD25+ suppressor T cells. Immunol Rev. 2001;182:58–67.

    Article  CAS  PubMed  Google Scholar 

  76. Clark RA, et al. Human squamous cell carcinomas evade the immune response by down – regulation of vascular E – selectin and recruitment of regulatory T cells. J Exp Med. 2008;205:2221–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Urosevic M, Dummer R. Immunotherapy for nonmelanoma skin cancer: does it have a future? Cancer. 2002;94:477–85.

    Article  CAS  PubMed  Google Scholar 

  78. Amini S, Viera MH, Valins W, Berman B. Nonsurgical innovations in the treatment of nonmelanoma skin cancer. J Clin Aesthet dermatol. 2010;3:20.

    Google Scholar 

  79. Love WE, Bernhard JD, Bordeaux JS. Topical imiquimod or fluorouracil therapy for basal and squamous cell carcinoma: a systematic review. Arch Dermatol. 2009;145:1431–8.

    Article  CAS  PubMed  Google Scholar 

  80. Sauder DN. Immunomodulatory and pharmacologic properties of imiquimod. J Am Acad Dermatol. 2000;43:S6–11.

    Article  CAS  PubMed  Google Scholar 

  81. Huang SJ, et al. Imiquimod enhances IFN – gamma production and effector function of T cells infiltrating human squamous cell carcinomas of the skin. J Invest Dermatol. 2009;129:2676–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ikić D, et al. Interferon therapy for basal cell carcinoma and squamous cell carcinoma. Int J Clin Pharmacol Ther Toxicol. 1991;29:342–6.

    PubMed  Google Scholar 

  83. Edwards L, et al. Treatment of cutaneous squamous cell carcinomas by intralesional interferon alfa-2b therapy. Arch Dermatol. 1992;128:1486–9.

    Article  CAS  PubMed  Google Scholar 

  84. Scaltriti M, Baselga J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res. 2006;12:5268–72.

    Article  CAS  PubMed  Google Scholar 

  85. Maubec E, et al. Phase II study of cetuximab as first – line single – drug therapy in patients with unresectable squamous cell carcinoma of the skin. J Clin Oncol. 2011;29:3419–26.

    Article  CAS  PubMed  Google Scholar 

  86. Bejar C, Maubec E. Therapy of advanced squamous cell carcinoma of the skin. Curr Treat Options Oncol. 2014;15:302–20.

    Article  PubMed  Google Scholar 

  87. Alter M, Satzger I, Mattern A, Kapp A, Gutzmer R. Treatment of advanced cutaneous squamous cell carcinomas with epidermal growth factor receptor inhibitors. Dermatology. 2013;227:289–94.

    Article  CAS  PubMed  Google Scholar 

Mycosis Fungoides

  1. Robson A, et al. The pathology of cutaneous T-cell lymphoma. Oncology (Williston Park). 2007;21(2 Suppl 1):9–12.

    Google Scholar 

  2. Vowels BR, et al. Aberrant cytokine production by Sezary syndrome patients: cytokine secretion pattern resembles murine Th2 cells. J Invest Dermatol. 1992;99:90–4.

    Article  CAS  PubMed  Google Scholar 

  3. Dummer R, et al. Sezary syndrome, T-helper 2 cytokines and accessory factor-1 (AF-1). Leuk Lymphoma. 1998;28:515–22.

    Article  CAS  PubMed  Google Scholar 

  4. Berger CL, et al. Cutaneous T-cell lymphoma: malignant proliferation of T-regulatory cells. Blood. 2005;105:1640–7.

    Article  CAS  PubMed  Google Scholar 

  5. Wong HK, et al. Increased expression of ctla-4 in malignantT-cells from patients with mycosis fungoides - cutaneousTcell lymphoma. J Invest Dermatol. 2006;126:212–9.

    Article  CAS  PubMed  Google Scholar 

  6. Tiemessen MM, et al. Lack of suppressive CD4 + CD25+ FOXP3+ Tcells in advanced stages of primary cutaneousT- cell lymphoma. J Invest Dermatol. 2006;126:2217–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vowels BR, et al. Th2 cytokine mRNA expression in skin in cutaneousT-cell lymphoma. J Invest Dermatol. 1994;103:669–73.

    Article  CAS  PubMed  Google Scholar 

  8. Asadullah K, et al. Progression of mycosis fungoides is associated with increasing cutaneous expression of interleukin- 10 mRNA. J Invest Dermatol. 1996;107:833–7.

    Article  CAS  PubMed  Google Scholar 

  9. Papadavid E, et al. The relevance of peripheral blood T-helper 1and 2 cytokine pattern in the evaluation of patients with mycosis fungoides and Sezary syndrome. Br J Dermatol. 2003;148:709–18.

    Article  CAS  PubMed  Google Scholar 

  10. Weaver CT, et al. Th17: an effector CD4 Tcell lineage with regulatoryTcell ties. Immunity. 2006;24:677–88.

    Article  CAS  PubMed  Google Scholar 

  11. Teunissen MB, et al. Interleukin-17 and interferon – gamma synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J Invest Dermatol. 1998;111:645–9.

    Article  CAS  PubMed  Google Scholar 

  12. Krejsgaard T, et al. Elucidating the role of interleukin-17F in cutaneous T-cell lymphoma. Blood. 2013;122(6):943–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Willemze R, et al. Primary cutaneous lymphomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow – up. Ann Oncol. 2013;24 Suppl 6:vi149–54.

    Article  PubMed  Google Scholar 

  14. Wong HK, et al. Novel biomarkers, dysregulated epigenetics, and therapy in cutaneous T-cell lymphoma. Discov Med. 2013;16(87):71–8.

    PubMed  Google Scholar 

  15. Jain S, et al. Novel therapeutic agents for cutaneous T-Cell lymphoma. J Hematol Oncol. 2012;5:24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Akilov OE, et al. Therapeutic advances in cutaneous T-cell lymphoma. Skin Therapy Lett. 2011;16(2):1–5.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ke-Hua Li MD , Le Qu , Li-Xin Xia , Ke-Hua Li MD , Le Qu , Kehua Li MD or Li-Xin Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Li, KH. et al. (2017). Neoplasms. In: Gao, XH., Chen, HD. (eds) Practical Immunodermatology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0902-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-0902-4_12

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-0900-0

  • Online ISBN: 978-94-024-0902-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics