Skip to main content

Concept of Genome-Wide Association Studies

  • Chapter
Current Technologies in Plant Molecular Breeding

Abstract

The human genome project, which ended in 2003, provided a human genome map with 99.99 % accuracy. This project stimulated association studies between traits and genes and allowed the discovery of new genes. In 2006, an innovational method known as genome-wide association study (GWAS) was developed. GWAS is different from the traditional method of studying associations between a few candidate genes and traits in that GWAS can handle about one million single-nucleotide polymorphisms (SNPs) simultaneously.

These days, GWAS is widely used to study genetic factors related to phenotype in many species, including plants. The advances in next generation sequencing (NGS) have allowed large amounts of genetic data to be obtained at a relatively low cost.

In this chapter, we will review GWAS including the associated statistical concepts and available software packages. We describe the use of GAPIT (Genomic Association and Prediction Integrated Tool) and demonstrate SNP calling using the widely used commercial CLC Genomic Workbench with re-sequenced cucumber genome data. Finally, we examine the current status of genomics research worldwide that requires whole-genome resequencing, one of the requirements of GWAS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Blankenberg D, Hillman-Jackson J (2014) Analysis of next-generation sequencing data using Galaxy. Methods Mol Biol 1150:21–43

    Article  CAS  PubMed  Google Scholar 

  • Bouchet S, Servin B, Bertin P et al (2010) Adaptation of mixed linear model for genome-wide association studies. Nat Genet 242:355–360

    Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE et al (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Gibson G (2010) Hints of hidden heritability in GWAS. Nat Genet 42:558–560

    Article  CAS  PubMed  Google Scholar 

  • Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31:423–447

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Wei X, Sang T et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42(11):961–967

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Zhao Y, Wei X et al (2012a) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44(1):32–39

    Article  Google Scholar 

  • Huang X, Kurata N, Wei X et al (2012b) A map of rice genome variation reveals the origin of cultivated rice. Nature 490(7421):497–501

    Article  CAS  PubMed  Google Scholar 

  • Kang HM, Zaitlen NA, Wade CM et al (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    Article  PubMed Central  PubMed  Google Scholar 

  • Kennedy B, Quinton M, Van Arendonk J (1992) Estimation of effects of single genes on quantitative traits. J Anim Sci 70:2000–2012

    CAS  PubMed  Google Scholar 

  • Li J-Y, Wang J, Zeigler R (2014) The 3,000 rice genomes project: new opportunities and challenges for future rice research. GigaScience 3(1):8

    Article  PubMed Central  PubMed  Google Scholar 

  • Lipka AE, Tian F, Wang Q et al (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28(18):2397–2399

    Article  CAS  PubMed  Google Scholar 

  • Matsuda F, Nakabayashi R, Yang Z et al (2015) Metabolome-genome-wide association study (mGWAS) dissects genetic architecture for generating natural variation in rice secondary metabolism. Plant J81(1):13–23

    Article  Google Scholar 

  • Miller JR, Koren S, Sutton G (2010) Assembly algorithms for next sequencing data. Genomics 95:315–327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Price A, Patterson N, Plenge R et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet 81(3):550–575

    Article  Google Scholar 

  • Shaffer JP (1995) Multiple hypothesis testing. Annu Rev Psychol 46:561–584

    Article  Google Scholar 

  • Van Dijk EL, Auger H, Jaszczyszyn Y et al (2014) Ten year of next-generation sequencing technology. Trends Genet 30:418–426

    Article  PubMed  Google Scholar 

  • Visscher PM, Brown MA, McCarthy MI et al (2012) Five years of GWAS discovery. Am J Hum Genet 90:7–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu X, Liu X, Ge S et al (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30(1):105–111

    Article  CAS  Google Scholar 

  • Yang W, Guo Z, Huang C et al (2014) Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat Commun 5:5087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yekutieli D, Benjamini Y (1999) Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics. J Stat Plann Inference 82:171–196

    Article  Google Scholar 

  • Zhao K, Tung CW, Eizenga GC et al (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jin Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lee, CY., Kim, TS., Lee, S., Park, YJ. (2015). Concept of Genome-Wide Association Studies. In: Koh, HJ., Kwon, SY., Thomson, M. (eds) Current Technologies in Plant Molecular Breeding. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9996-6_6

Download citation

Publish with us

Policies and ethics