Skip to main content

Abstract

Since the Arabidopsis genome was sequenced, hundreds of plant genomes have either been sequenced or are in sequencing progress. Reference genome sequences and large-scale genome sequencing technologies have initiated a new era in molecular breeding. The field of genomics is progressing rapidly and has already provided invaluable practical products for plant molecular breeding. Here, we review progress in genome sequencing technology and its application to plant breeding. We introduce various genomics tools and discuss how next-generation genome sequencing and genotyping technologies have been applied to high-throughput molecular breeding. We also describe the use of epigenome analysis to interpret phenotypic variations that cannot be explained by simple genetics based on the underlying DNA sequence alone, but rather by epigenetically-controlled mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akimoto K, Katakami H, Kim HJ et al (2007) Epigenetic inheritance in rice plants. Ann Bot 100(2):205–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amoah S, Kurup S, Rodriguez Lopez CM et al (2012) A hypomethylated population of Brassica rapa for forward and reverse epi-genetics. BMC Plant Biol 12:193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atwell S, Huang YS, Vilhjálmsson BJ et al (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avery OT, Macleod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus type III. J Exp Med 79:137–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey-Serres J, Fukao T, Ronald P et al (2010) Submergence tolerant rice: SUB1’s journey from landrace to modern cultivar. Rice 3:138–147

    Article  Google Scholar 

  • Bashir A, Klammer AA, Robins WP et al (2012) A hybrid approach for the automated finishing of bacterial genomes. Nat Biotechnol 30:701–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentley DR, Balasubramanian S, Swerdlow HP et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128(4):669–681

    Article  CAS  PubMed  Google Scholar 

  • Butler J, MacCallum I, Kleber M et al (2008) ALLPATHS: de novo assembly of whole-genome shotgun microreads. Genome Res 18:810–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan M, Chan MW, Loh TW et al (2011) Evaluation of nanofluidics technology for high-throughput SNP genotyping in a clinical setting. J Mol Diagn 13(3):305–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan SW, Henderson IR, Jacobsen SE (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6(5):351–360

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Gao C (2013) TALENs: customizable molecular DNA scissors for genome engineering of plants. J Genet Genomics 40(6):271–279

    Article  PubMed  Google Scholar 

  • Choi SH, Lee BH, Kim HJ et al (2014) Ginseng gintonin activates the human cardiac delayed rectifier K+ channel: involvement of Ca2+/calmodulin binding sites. Mol Cells 37:656–663

    Article  PubMed  PubMed Central  Google Scholar 

  • CLC bio: CLC Assembly Cell user manual. http://www.clcbio.com/products/clc-genomics-workbench/

  • Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401(6749):157–161

    Article  CAS  PubMed  Google Scholar 

  • Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138

    Article  CAS  PubMed  Google Scholar 

  • English AC, Richards S, Han Y et al (2012) Mind the gap: upgrading genomes with pacific biosciences RS long-read sequencing technology. PLoS One 7(11):e47768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauben M, Haesendonckx B, Standaert E et al (2009) Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield. Proc Natl Acad Sci U S A 106(47):20109–20114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson IR, Jacobsen SE (2007) Epigenetic inheritance in plants. Nature 447(7143):418–424

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Feng Q, Qian Q et al (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Jacobsen SE, Meyerowitz EM (1997) Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277(5329):1100–1103

    Article  CAS  PubMed  Google Scholar 

  • Jeddeloh JA, Stokes TL, Richards EJ (1999) Maintenance of genomic methylation requires a SW12/SNF2-like protein. Nat Genet 22(1):94–97

    Article  CAS  PubMed  Google Scholar 

  • Johnson LM, Du J, Hale CJ et al (2014) SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature 507(7490):124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakutani T (1997) Genetic characterization of late-flowering traits induced by DNA hypomethylation mutation in Arabidopsis thaliana. Plant J 12(6):1447–1451

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Miura A, Bender J et al (2003) Role of CG and non-CG methylation in immobilization of transposons in arabidopsis. Curr Biol 13(5):421–426

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Park M, Yeom SI et al (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46(3):270–278

    Article  CAS  PubMed  Google Scholar 

  • Koren S, Schatz MC, Walenz BP et al (2012) Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 30:693–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lippman Z, Gendrel AV, Black M et al (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430(6998):471–476

    Article  CAS  PubMed  Google Scholar 

  • Lister R, O’Malley RC, Tonti-Filippini J et al (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133(3):523–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu WY, Kang JH, Jeong HS et al (2014a) Combined use of bulked segregant analysis and microarrays reveals SNP markers pinpointing a major QTL for resistance to Phytophthora capsici in pepper. Theor Appl Genet 127(11):2503–2513

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Liu Y, Yang X et al (2014b) The Brassica oleracea genome reveals the asymmetrical evolution of polyploidy genomes. Nat Commun 5:3930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo LJ (2010) Breeding for water-saving and drought-resistance rice (WDR) in China. J Exp Bot 61:3509–33517

    Article  CAS  PubMed  Google Scholar 

  • Luo R, Liu B, Xie Y et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Giga Sci 1:18

    Article  Google Scholar 

  • Maeder ML, Angstman JF, Richardson ME et al (2013) Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 31(12):1137–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning K, Tor M, Poole M et al (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38(8):948–952

    Article  CAS  PubMed  Google Scholar 

  • Martin A, Troadec C, Boualem A et al (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461(7267):1135–1138

    Article  CAS  PubMed  Google Scholar 

  • Mendenhall EM, Williamson KE, Reyon D et al (2013) Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol 31(12):1133–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura K, Agetsuma M, Kitano H et al (2009) A metastable DWARF1 epigenetic mutant affecting plant stature in rice. Proc Natl Acad Sci U S A 106(27):11218–11223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura K, Ikeda M, Matsubara A et al (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42(6):545–549

    Article  CAS  PubMed  Google Scholar 

  • Myers EW, Sutton GG, Delcher AL et al (2000) A whole-genome assembly of Drosophila. Science 287(5461):2196–2204

    Article  CAS  PubMed  Google Scholar 

  • Palermo RE, Tisonici-Go J, Korth MJ et al (2013) Old world monkeys and new age science: the evolution of nonhuman primate systems virology. ILAR J 54(2):166–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasam RK, Sharma R, Malosetti M et al (2012) Genome-wide association studies for agronomical traits in a worldwide spring barley collection. BMC Plant Biol 12:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME et al (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7(2):e32253. doi:10.1371/journal.pone.0032253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quadrana L, Almeida J, Asis R et al (2014) Natural occurring epialleles determine vitamin E accumulation in tomato fruits. Nat Commun 5:3027

    Article  CAS  PubMed  Google Scholar 

  • Quail MA, Smith M, Coupland P et al (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13:341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinders J, Wulff BB, Mirouze M et al (2009) Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev 23(8):939–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro FJ, Przybylski D, Yin S et al (2012) Finished bacterial genomes from shotgun sequence data. Genome Res 22:2270–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothberg JM, Leamon JH (2008) The development and impact of 454 sequencing. Nat Biotechnol 26(10):1117–1124

    Article  CAS  PubMed  Google Scholar 

  • Saze H, Kakutani T (2007) Heritable epigenetic mutation of a transposon-flanked Arabidopsis gene due to lack of the chromatin-remodeling factor DDM1. EMBO J 26(15):3641–3652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shendure J (2013) 2012 Curt stern award address. Am J Hum Genet 92(3):340–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sim S-C, Durstewitz G, Plieske J et al (2012) Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS One 7:e40563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Q, Hyten DL, Jia G et al (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS One 8(1):e54985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soppe WJJ, Jacobsen SE, Alonso-Blanco C et al (2000) The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell 6(4):791–802

    Article  CAS  PubMed  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Trebbi D, Maccaferri M, de Heer P et al (2011) High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf.). Theor Appl Genet 123(4):555–569

    Article  PubMed  Google Scholar 

  • Vongs A, Kakutani T, Martienssen RA et al (1993) Arabidopsis-thaliana DNA methylation mutants. Science 260(5116):1926–1928

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang H, Wang J et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Westengen OT, Berg PR, Kent MP et al (2012) Spatial structure and climatic adaptation in African maize revealed by surveying SNP diversity in relation to global breeding and landrace panels. PLoS One 7(10):e47832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang TJ, Kim JS, Kwon SJ (2006) Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18:1339–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang CQ, Hsieh T-F (2013) Heritable epigenetic variation and its potential applications for crop improvement. Plant Breed Biotechnol 1:307–319

    Article  Google Scholar 

  • Zhang K, Davenport KW, Gu W et al (2012) Improving genome assemblies by sequencing PCR products with PacBio. Biotechniques 53:61–62

    CAS  PubMed  Google Scholar 

  • Zhang X, Henderson IR, Lu C et al (2007) Role of RNA polymerase IV in plant small RNA metabolism. Proc Natl Acad Sci U S A 104:4536–4541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126(6):1189–1201

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Tung CW, Eizenga GC et al (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong S, Fei Z, Chen YR et al (2013) Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat Biotechnol 31(2):154–159

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Jin Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Choi, IY., Joh, HJ., Yi, G., Huh, J.H., Yang, TJ. (2015). Genomics-Assisted Breeding. In: Koh, HJ., Kwon, SY., Thomson, M. (eds) Current Technologies in Plant Molecular Breeding. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9996-6_5

Download citation

Publish with us

Policies and ethics