Skip to main content

Thermodynamic Modeling of Portland Cement—Metakaolin—Limestone Blends

  • Conference paper
  • First Online:
Calcined Clays for Sustainable Concrete

Part of the book series: RILEM Bookseries ((RILEM,volume 10))

Abstract

The partial replacement of Portland cement by different supplementary cementitious materials (SCM´s) has been investigated extensively in recent years with the aim of reducing the embodied CO2 of blended Portland cements. In this work, we have utilized the maximum cement substitution of 35 wt%, according to the standard EN 197-1, and investigated the effect of changing the metakaolin/limestone ratio on the hydrating phase assemblages. Paste samples of the hydrated cement blends have been characterized by XRD, 27Al and 29Si MAS NMR spectroscopy and the results are compared with thermodynamic modeling. 29Si MAS NMR is a very valuable technique for studies of hydrated cement blends, since it allows detection of amorphous and crystalline phases in an equal manner. The determined degrees of hydration have been implemented into thermodynamic modeling to improve the modeling approach and thereby the agreement between predicted and observed phase assemblages. A simple equation has been established for implementation of the hydration kinetics which employs only one mass and one dissolution-rate parameter to describe the hydration successfully. The agreement between the experimental and modeled phase assemblages improves significantly when the hydration kinetics for the anhydrous alite, belite, and amorphous MK phases are implemented. The phase assemblages of the hydrated blends change only for very high MK contents from a C(-A)-S-H, calcite, portlandite, monocarbonate and ettringite system to a phase assemblage that in addition contains strätlingite and other AFm phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nehdi, M., Mindess, S., Aïtcin, P.-C.: Optimization of high strength limestone filler cement mortars. Cem. Conc. Res. 26, 883–893 (1996)

    Article  Google Scholar 

  2. Tsivilis, S., Chaniotakis, E., Kakali, G., Batis, G.: An analysis of the properties of Portland limestone cements and concrete. Cem. Conc. Comp. 24, 371–378 (2002)

    Article  Google Scholar 

  3. De Weerdt, K., Ben Haha, M., Le Saout, G., Kjellsen, K.O., Justnes, H., Lothenbach, B.: Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem. Conc. Res 41, 279–291 (2001)

    Article  Google Scholar 

  4. Steenberg, M., Herfort, D., Poulsen, S.L., Skibsted, J., Damtoft, J. S.: Composite cement based on Portland cement clinker, limestone and calcined clay. In: 13th International Congress of the Chemistry of Cement, p. 97 (7 pages) (Madrid, Spain) (2011)

    Google Scholar 

  5. Damidot, D., Lothenbach, B., Herfort, D., Glasser, F.P.: Thermodynamics and cement science. Cem. Conc. Res. 41, 679–695 (2011)

    Article  Google Scholar 

  6. Dai, Z., Kunther, W., Garzón, S. F., Herfort, D., Skibsted, J.: Investigation of blended systems of supplementary cementitious materials with white Portland cement and limestone (in preparation)

    Google Scholar 

  7. Kunther, W., Dai, Z., Skibsted, J.: Modeling the hydration of metakaolin blended cements based on hydration kinetics obtained by 29Si MAS NMR spectroscopy (in preparation)

    Google Scholar 

  8. Taylor, H.F.W.: Cement Chemistry. Thomas Telford (1997)

    Google Scholar 

  9. Parrot, L., Killoh, D.: Prediction of cement hydration. In: Proceedings of British Ceramic Social pp 41–53(1984)

    Google Scholar 

  10. Dai, Z., Tran, T.T., Skibsted, J.: Aluminum Incorporation in the C-S–H phase of white Portland cement-metakaolin blends studied by 27Al and 29Si MAS NMR spectroscopy. J. Am. Ceram. Soc. 97, 2662–2671 (2014)

    Article  Google Scholar 

Download references

Acknowledgment

The Danish National Advanced Technology Foundation is acknowledged for financial support to the SCM project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Kunther .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 RILEM

About this paper

Cite this paper

Kunther, W., Dai, Z., Skibsted, J. (2015). Thermodynamic Modeling of Portland Cement—Metakaolin—Limestone Blends. In: Scrivener, K., Favier, A. (eds) Calcined Clays for Sustainable Concrete. RILEM Bookseries, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9939-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9939-3_18

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9938-6

  • Online ISBN: 978-94-017-9939-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics