Skip to main content

A Brief History of Nanoscience and Foresight in Nanotechnology

  • Conference paper
Nanomaterials and Nanoarchitectures

Abstract

Nanotechnology as a natural continuation of microtechnology introduced a new bottom-up approach in the building of structures. In this paper we summarize a brief history of nanoscience and nanotechnology by documenting the main milestones on the roadmap of this branch since the beginning of the twentieth century. We discuss the new properties of materials and structures appearing in the nanoworld that originate from both classical and quantum phenomena. We provide a critical analysis of inflated versus realistic expectations of the new technology. Attention is also paid to risks and regulations in the field, as well as codes of conduct of responsible nanoscientists and specific aspects of nanoethics that open a new chapter in ethical studies. The study elaborates on five foresight topics covering the building of structures atom-by-atom, the possibilities to close the appearing nano-divide, the future of silicon, single-particle devices, and sustainability in the field and single-particle devices. Among single particle devices the focus is on the transistors and sensors. We also highlight the role of social sciences and humanities in nanoscience and nanotechnology in the fields such as philosophy, psychology, security, the protection of privacy and intellectual property rights. Ethics is the main area of these activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For comparison the length of carbon bond and diameter of DNA are 0.2 and 2 nm, respectively, the size of bacteria equals to approx. 200 nm.

  2. 2.

    In spintronics information is carried by both charge and spin of electron. Information is lost at the length lsf of the spin-flip. lsf is about 10–40 nm in cobalt and 40–140 nm in copper, which are two common metals used in spin valves. Therefore spintronics belongs to N&N.

  3. 3.

    Old amphitheatres and dwellings digged into rocks, like in Italian town Matera, are examples of the first and second approach, respectively.

  4. 4.

    A self-replicating device was described earlier by von Neumann [33].

Abbreviations

AMD:

Advanced Micro Devices

AFM:

Atomic force microscope

CNT:

Carbon nanotube

CNTFET:

Field effect transistor with channel from nanotube

D:

Dimension

EC:

European Commission

ERC:

European Research Council

FET:

Field effect transistor

FP:

Framework program of EC

GMR:

Giant magnetoresistance

IBM:

International Business Machines

IC:

Integrated circuit

ICT:

Information and communication technology

MFM:

Magnetic force microscope

MBE:

Molecular beam epitaxy

NMP:

Nanoscience, nanotechnologies, materials and producing technologies, thematic area of FP7

N&N:

Nanoscience and nanotechnology

NNI:

National Nanotechnology Initiative, USA

NP:

Nobel Prize

RAM:

Random access memory

ROM:

Read only memory

SPM:

Scanning probe microscope, into this category belong AFM, MFM and STM

STM:

Scanning tunneling microscope

References

Research Papers

  1. Stix G (2001) Little big science. Sci Am 285(3):32

    Article  CAS  Google Scholar 

  2. Moore GE (1998) Cramming more components onto integrated circuit. Proc IEEE 86:82, Reprinted from Electron Mag 38(8):114 (1965)

    Google Scholar 

  3. Moore’s law (2013) http://en.wikipedia.org/wiki/Moore’s-law. Accessed 4 Nov 2013

  4. Schaller B (2013) The origin, nature and implication of “Moore’s law”. http://reserach.microsoft.com/en-us/um/people/gray/Moore_Law/html. Accessed 14 Nov 2013

  5. The end of Moore’s law is on the horizon, says AMD. http://www.pcworld.com/article/2032913. Accessed 3 Apr 2013

  6. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49:57

    Article  Google Scholar 

  7. Luby S, Majkova E (1997) Semiconductors. In: Hajko V (ed) Physics in experiments. VEDA, Publication House of SAS, Bratislava, p 163

    Google Scholar 

  8. Bontems VK (2011) How to accommodate of the invisible? The ‘halo’ of ‘nano’. Nanoethics 5:175

    Article  Google Scholar 

  9. Feynman RP There’s plenty of room at the bottom. (Caltech Eng Sci J, 1960), http://www.zyvex.com/nanotech/feynman.html. Accessed 26 Feb 1999

  10. Moriarty P (2001) Nanostructured materials. Rep Prog Phys 64:297

    Article  CAS  Google Scholar 

  11. Kunze U (2002) Nanoscale devices fabricated by dynamic ploughing with an atomic force microscope, review. Superlattice Microst 31:3

    Article  CAS  Google Scholar 

  12. Ramachandra Rao CN, Kulkarni GU, Thomas PJ, Edwards PP (2000) Metal nanoparticles and their assemblies. Chem Soc Rev 29:27

    Article  Google Scholar 

  13. Gould P (2004) Nanoparticles probe biosystems. Mater Today 7(2):36

    Article  CAS  Google Scholar 

  14. Warheit DB (2004) Nanoparticles: health impact? Mater Today 7(2):32

    Article  CAS  Google Scholar 

  15. Tartaj P, Morales MP, Gonzáles-Carreño T, Veintemillas-Verdaguer S, Serna CJ (2005) Advances in magnetic nanoparticles for biotechnology applications. J Magn Magn Mater 290–291:28

    Article  Google Scholar 

  16. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3395

    Article  Google Scholar 

  17. Meier W (2002) Vision – science and innovation made in Switzerland, Special issue. Science Com Ltd, Bern, p 16

    Google Scholar 

  18. Sajgalik P, Hnatko M, Lences Z, Dusza Z, Kasiarova M (2006) In situ preparation of Si3N4/SiC nanocomposites for cutting tools application. Int J Appl Ceram Technol 3:41, Special Issue

    Google Scholar 

  19. Luby S, Chitu L, Jergel M, Majkova E, Siffalovic P, Caricato AP, Luches A, Martino M, Rella R, Manera MG (2012) Oxide nanoparticle arrays for sensors of CO nad NO2 gases. Vacuum 86:590

    Article  CAS  Google Scholar 

  20. Kaye P, Laflamme R, Mosca M (2007) An introduction to quantum computing. Oxford University Press, New York, p 288. ISBN 9780198570493

    Google Scholar 

  21. Tsu R (2001) Challenges in nanoelectronics. Nanotechnology 12:625

    Article  CAS  Google Scholar 

  22. Kouwenhoven LP, Venema LC (2000) Heat flow through nanobridges. Nature 404:943

    Article  CAS  Google Scholar 

  23. Held GA, Grinstein G (2001) Quantum limit of magnetic recording density. Appl Phys Lett 79:1501

    Article  CAS  Google Scholar 

  24. Yacamán MJ, Ascencio JA, Liu HB, Gardea-Torresdey J (2001) Structure shape and stability of nanometric sized particles. J Vac Sci Technol B 19:1091

    Article  Google Scholar 

  25. Li M, Li JC (2006) Size effects on the band-gap of semiconductor compounds. Mater Lett 60:2526

    Article  CAS  Google Scholar 

  26. Hersam M (2011) Nanoscience and nanotechnology in the posthype era. ACS Nano 5:1

    Article  CAS  Google Scholar 

  27. McGinn R (2010) Ethical responsibilities of nanotechnology researchers: a short guide. Nanoethics 4:1

    Article  Google Scholar 

  28. Grinbaum A (2010) The nanotechnological golem. Nanoethics 4:191

    Article  Google Scholar 

  29. Ebbesen M (2008) The role of the humanities and social sciences in nanotechnology research and development. Nanoethics 2:1

    Article  Google Scholar 

  30. Toumey C (2007) Privacy in the shadow of nanotechnology. Nanoethics 1:211

    Article  Google Scholar 

  31. Drexler KE (1986) Engines of creation. Anchor, New York

    Google Scholar 

  32. Drexler KE (1981) Molecular engineering: an approach to the development of general capabilities for molecular manipulation. Proc Natl Acad Sci U S A 78:5275

    Article  CAS  Google Scholar 

  33. von Neumann J, Burks AW (eds) (1966) Theory of self-reproducing automata. University of Illinois Press, Urbana/London, pp 64–87

    Google Scholar 

  34. Marchant GE, Sylvester DJ, Abbott KW (2008) Risk management principles for nanotechnology. Nanoethics 2:43

    Article  Google Scholar 

  35. Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1:482

    Article  CAS  Google Scholar 

  36. Eggelson K http://www.sciencedaily.com/releases/2012/04/120428000220.htm. Accessed 9 Oct 2013

  37. Smalley R http://en.wikipedia.org/wiki/Richard_Smalley. Accessed 10 June 2013

  38. Nanotechnology http://en.wikipedia.org/wiki/Nanotechnology

  39. Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48:1

    Article  CAS  Google Scholar 

  40. Rangelow IW, Kostic I et al (2007) Piezoresistive and self-actuated cantilever arrays for nanotechnology applications. Microelectron Eng 84:1260

    Article  CAS  Google Scholar 

  41. Penzias A (1989) Ideas and information. Penguin, Canada

    Google Scholar 

  42. International Workshop on Nanotechnology (2013) Serpon Indonesia, Oct 2013

    Google Scholar 

  43. Roukes M (2001) Plenty of room, indeed. Sci Am 285:42

    Article  Google Scholar 

  44. Fujisaki Y (2013) Review of emerging new solid-state non-volatile memories. Jpn J Appl Phys 52:040001

    Article  Google Scholar 

  45. Terris BD, Thomson T (2005) Nanofabricated and self-assembled magnetic structures as data storage media. J Phys D Appl Phys 38:R199

    Article  CAS  Google Scholar 

  46. Han J-W, Oh JS, Meyyappan M (2012) Vacuum nanoelectronics: back to the future? – gate insulated nanoscale vacuum channel transistors. Appl Phys Lett 100:213505

    Article  Google Scholar 

  47. Smalley RE (2003) Top ten problems of humanity for next 50 years. Paper presented at the conference on energy and nanotechnology, Rice University, Houston, 3 May 2003

    Google Scholar 

  48. Kozhukharov V, Machkova M (2013) Nanomaterials and nanotechnology: European initiatives, status and strategy. J Chem Tech Metall 48:3

    Google Scholar 

  49. Leydesdorff L, Rafols I (2009) A global map of science based on the ISI subject cathegories. J Am Soc Inf Sci Technol 60:348

    Article  Google Scholar 

  50. Xie F-Q, Maul R, Augenstein A, Obermair C, Starikov EB, Schön G, Schimmel T, Wenzel W (2008) Independently switchable atomic quantum transistors by reversible contact reconstruction. Nano Lett 8:4493

    Article  CAS  Google Scholar 

  51. Rossier JF (2013) Single-atom devices: quantum engineering. Nat Mater 12:480–481

    Article  Google Scholar 

  52. Fulton TA, Dolan GJ (1987) Observation of single-electron charging effects in small tunnel junctions. Phys Rev Lett 59:109

    Article  Google Scholar 

  53. Tilke A, Pescini L, Blick RH, Lorenz H, Kotthaus JP (2000) Single-electron tunneling in silicon nanostructures. Appl Phys A 71:357

    Article  Google Scholar 

  54. Mandal S (2013) Single electron transistor. Int J Innov Eng Technol 2:408

    Google Scholar 

  55. Semenov AD, Gol’tsman GN, Korneev AA (2001) Quantum detection by current carrying superconducting film. Phys C 351:349

    Article  CAS  Google Scholar 

  56. Natarajan CM, Tanner MG, Hadfield RH (2012) Supraconducting nanowire single-photon detector: physics and applications. Supercond Sci Technol 25:063001

    Article  Google Scholar 

  57. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655

    Article  CAS  Google Scholar 

  58. Yonzon CR, Stuart DA, Zhang X, McFarland AD, Haynes CL, van Duyne RP (2005) Towards advanced chemical and biological nanosensors – an overview. Talanta 67:438

    Article  CAS  Google Scholar 

  59. Bastani B, Fernandez D (2002) Intellectual property rights in nanotechnology. Thin Solid Films 420–421:472

    Article  Google Scholar 

  60. Larrére C (2010) Ethics and nanotechnology: the issue of perfectionism. Int J Philos Chem 16:19

    Google Scholar 

  61. Dupuy JP (2004) Pour une evaluation normative du programme nanotechnologique. Ann Mines 27

    Google Scholar 

  62. Sandel MJ (2007) The case against perfectionism: ethics in the age of genetic engineering. Belknap, Cambridge, MA

    Google Scholar 

  63. McGinn R (2008) Ethics and nanotechnology: views of nanotechnology research. Nanoethics 2:101

    Article  Google Scholar 

  64. Ethics and Nanotechnology http://www.understandingnano.com/nanotechnology-ethics.html. Accessed 9 Dec 2013

  65. Bacchini F (2013) Is nanotechnology giving rise to new ethical problems? Nanoethics 7:107

    Article  Google Scholar 

  66. Toumey C (2011) Seven religious reactions to nanotechnology. Nanoethics 5:251

    Article  Google Scholar 

  67. Grunwald A, Julliard Y (2007) Nanoethics 1:77

    Article  Google Scholar 

  68. Schattenburg ML (2001) J Vac Sci Technol B 19:219

    Article  Google Scholar 

  69. Rashba E, Gamota D (2003) J Nanopart Res 5:401.

    Google Scholar 

  70. http://en.wikpedia.org/wiki/Biomimetics. Accessed 6 Dec 2013

  71. Thousands of pages of reports and plans are produced every year in the field of N&N by governments, institutions, scientific societies and companies. Here ten of them with the supranational importance are summarized. Comprehensive national reports are indexed in [R5]

    Google Scholar 

  72. [R1] National Nanotechnology Initiative, president Clinton WJ, 2000 (think tank of the White house, 1998)

    Google Scholar 

  73. [R2] Nanostructure Science and Technology, National Science and Technology Council, R. W. Siegel, chair, Loyola Coll. Maryland, 1999

    Google Scholar 

  74. [R3] Bhushan B (ed) (2004) Springer handbook of nanotechnology. Springer, Berlin/Heidelberg/New York, 1221 pp

    Google Scholar 

  75. [R4] N&N Action plan for Europe 2005–2009, COM (2005) 243, 9. 6. 2005

    Google Scholar 

  76. [R5] UNESCO (2006) The ethics and politics of nanotechnology. UNESCO, Paris. http://www.unesco.org/shs/ethics

  77. [R6] Dosch H, Van de Voorde MH (eds) (2008) Gennesys white paper. Max-Planck Inst. für Metallforschung, Stuttgart. ISBN 978-3-00-027338-4

    Google Scholar 

  78. [R7] Commission Recommendation on a Code of Conduct for Responsible Nanosciences and Nanotechnology Research, C (2008) 424

    Google Scholar 

  79. [R8] N&N Opportunities and Uncertainties, Royal Society, Royal Acad Eng, 2004, retrieved 2011

    Google Scholar 

  80. [R9] Graphene Flagship, EC, January 2013, grant of 54 M€/30 months, 75 participants 17 countries, ICT & Mater & Energy & Health

    Google Scholar 

  81. [R10] Nanotechnology: the invisible giant tackling Europe’s future challenges, DG Res Inov Ind Techn EUR 13325 EN, 2013. ISBN 978-92-79-28892-0

    Google Scholar 

  82. [M1] Einstein A (1905) Eine neue Bestimmung der Moleküldimensionen. Ann der Physik 19:289

    Google Scholar 

  83. [M2] Knoll M, Ruska E (1932) Das Elektronenmikroskop. Z Physik 78:318

    Google Scholar 

  84. [M3] see ref. [9]

    Google Scholar 

  85. [M4] Arthur JR (1968) Interaction of Ga and As2 molecular beams with GaAs surfaces. J Appl Phys 39:4032

    Google Scholar 

  86. [M5] Taniguchi N (1974) On the basic concept of ’nano-technology. Proc Int Conf on Production Eng, Tokyo, 1974, Part II (Japan Society of Precision Engineering)

    Google Scholar 

  87. [M6] Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger A (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc, Chem Comm 16:578

    Google Scholar 

  88. [M7] Binnig G, Rohrer H, Gerber Ch, Weibel E(1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49:57

    Google Scholar 

  89. [M8] Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Buckminsterfullerene. Nature 162–163:318

    Google Scholar 

  90. [M9] Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:93

    Google Scholar 

  91. [M10] see ref. [31]

    Google Scholar 

  92. [M11] see ref. [52]

    Google Scholar 

  93. [M12] Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friedrich A, Chazelas J (1988) Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett 61:2472

    Google Scholar 

  94. Binasch G, Grünberg P, Saurenbach F, Zinn W (1989) Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B 39:4828

    Google Scholar 

  95. [M13] Dieny B, Speriosu VS, Gurney BA, Parkin SSP, Wilhoit DR, Roche KP, Metin S, Peterson DT, Nadini S (1991) Spin-valve effect in soft ferromagnetic sandwiches. J Mag Mag Mater 93:101

    Google Scholar 

  96. [M14] Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    Google Scholar 

  97. [M15] Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor basen on a single carbon nanotube. Nature 393:49

    Google Scholar 

  98. [M16] Garcia N, Munoz M, Zhao YW (1999) Magnetoresistance in excess of 200 % in ballistic Ni nanocontacts at room temperature and 100 Oe. Phys Rev Lett 82:2923

    Google Scholar 

  99. [M17] Lloyd S (2000) Ultimate physical limits to computation. Nature 406:1047

    Google Scholar 

  100. [M18] see ref. [R1]

    Google Scholar 

  101. [M19] Derycke V, Martel R, Appenzeller J, Avouris P (2001) Carbon nanotube inter- and intramolecular logic gates. Nano Lett 1:453

    Google Scholar 

  102. [M20] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field-effect in atomically thin carbon films. Science 306:666

    Google Scholar 

  103. [M21] see ref. [R4]

    Google Scholar 

  104. [M22] Liljeroth P, Repp J, Meyer G (2007) Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317:1203

    Google Scholar 

  105. [M23] see ref. [57]

    Google Scholar 

  106. [M24] Lemme MC, Echtermeyer TJ, Baus M, Kurz H (2007) A graphene field effect device. IEEE El Dev Lett 28:1

    Google Scholar 

  107. [M25] Ternes M, Lutz CP, Hirjibehedin F, Giessibl FJ, Heinrich AJ (2008) The force needed to move an atom on a surface. Science 319:1066

    Google Scholar 

  108. [M26] Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stromer HL (2008) Ultrahigh electron mobility in suspended graphene. Sol St Comm 146:351

    Google Scholar 

  109. [M27] Bérut A, Arakelyan A, Petrosyan A, Ciliberto S, Dillenschneider R, Lutz E (2012), Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483:187

    Google Scholar 

  110. Subjectcode: Z14000 Material Science, Nanotechnology

    Google Scholar 

Download references

Acknowledgements

This work was supported by the project VEGA, Bratislava, contract 2/0162/12, 2/0010/15 and Center of Excellence of SAS “CESTA”, contract III/2/2011

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Štefan Luby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Luby, Š., Lubyová, M., Šiffalovič, P., Jergel, M., Majková, E. (2015). A Brief History of Nanoscience and Foresight in Nanotechnology. In: Bardosova, M., Wagner, T. (eds) Nanomaterials and Nanoarchitectures. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9921-8_4

Download citation

Publish with us

Policies and ethics