Skip to main content

Modular Organization of the Prefrontal Cortex: The Legacy of Patricia Goldman-Rakic

  • Chapter
Recent Advances on the Modular Organization of the Cortex
  • 1075 Accesses

Abstract

The prefrontal cortex (PFC) is the brain area that distinguishes us as uniquely human. It guides decision making based on past experience, allowing us to break away from reflexively responding to the sensory conditions on hand at any moment. Sequential planning, cognitive flexibility and rational thinking all rely on the PFC. When Patricia Goldman-Rakic began her research career in the 1970s, the PFC was a terra incognita. Her work dispelled the notion that higher cognitive function is beyond the reach of the scientific method and revealed the basic neurobiology governing prefrontal executive function. Goldman-Rakic started her journey by probing the behavior disrupted by lesions in the PFC. An early foray into anatomic tract tracing led to the discovery of columns of afferent terminal labeling in the PFC. From this foothold, she began a relentless quest to understand the modular organization of prefrontal architecture and how the vertical arrangement of functionally related neurons translates into the mechanistic underpinnings of working memory. She characterized neuronal activity in the PFC that forms the essence of spatial mnemonic capacity. Her work teased apart the intricacies of local neurocircuitry in the PFC and examined modulation of this circuitry by monoaminergic neurotransmitters, especially dopamine. Goldman-Rakic’s studies of executive function extended from the regional level in distinguishing the dorsal and ventral domains that process spatial and object information, respectively, to the subcellular level in mapping the precise distribution of dopamine receptors. Her life’s work stands today as the foundation for our contemporary understanding of prefrontal cortical function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnsten AF, Cai JX, Murphy BL, Goldman-Rakic PS (1994) Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology 116:143–151

    Article  CAS  PubMed  Google Scholar 

  • Azuma M, Suzuki H (1984) Properties and distribution of auditory neurons in the dorsolateral prefrontal cortex of the alert monkey. Brain Res 298:343–346

    Article  CAS  PubMed  Google Scholar 

  • Baddeley AD, Hitch GJ (1974) Working memory. In: Bower GA (ed) Recent advances in learning and motivation, vol 8. Academic, New York, pp 47–90

    Google Scholar 

  • Baizer JS, Ungerleider LG, Desimone R (1991) Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. J Neurosci 11:168–190

    CAS  PubMed  Google Scholar 

  • Barbas H (1988) Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey. J Comp Neurol 276:313–342

    Article  CAS  PubMed  Google Scholar 

  • Bergson C, Mrzljak L, Smiley JF, Pappy M, Levenson R, Goldman-Rakic PS (1995) Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J Neurosci 15:7821–7836

    CAS  PubMed  Google Scholar 

  • Brown RM, Goldman PS (1977) Catecholamines in neocortex of rhesus monkeys: regional distribution and ontogenetic development. Brain Res 124:576–580

    Article  CAS  Google Scholar 

  • Brown RM, Crane AM, Goldman PS (1979) Regional distribution of monoamines in the cerebral cortex and subcortical structures of the rhesus monkey: concentrations and in vivo synthesis rates. Brain Res 168:133–150

    Article  CAS  PubMed  Google Scholar 

  • Brozoski TJ, Brown RM, Rosvold HE, Goldman PS (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205:929–932

    Article  CAS  PubMed  Google Scholar 

  • Cavada C, Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comp Neurol 287:422–445

    Article  CAS  PubMed  Google Scholar 

  • Constantinidis C, Goldman-Rakic PS (2001) Correlated discharges among putative pyramidal neurons and interneurons in the primate prefrontal cortex. J Neurophysiol 88:3487–3497

    Article  Google Scholar 

  • Constantinidis C, Franowicz MN, Goldman-Rakic PS (2001) Coding specificity in cortical microcircuits: a multiple-electrode analysis of primate prefrontal cortex. J Neurosci 21:3646–3655

    CAS  PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61:331–349

    CAS  PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1990) Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. J Neurophysiol 63:814–831

    CAS  PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1993) Dorsolateral prefrontal lesions and oculomotor delayed response performance: evidence for mnemonic “scotomas”. J Neurosci 13:1479–1497

    CAS  PubMed  Google Scholar 

  • Fuster JM (1973) Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J Neurophysiol 36:61–78

    CAS  PubMed  Google Scholar 

  • Fuster JM, Alexander GE (1971) Neuron activity related to short-term memory. Science 173:652–654

    Article  CAS  PubMed  Google Scholar 

  • Fuster JM, Bauer RH, Jervey JP (1982) Cellular discharge in the dorsolateral prefrontal cortex of the monkey in cognitive tasks. Exp Neurol 77:679–694

    Article  CAS  PubMed  Google Scholar 

  • Gao W-J, Goldman-Rakic PS (2003) Selective modulation of excitatory and inhibitory microcircuits by dopamine. Proc Natl Acad Sci 100:2836–2841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao W-J, Krimer LS, Goldman-Rakic PS (2001) Presynaptic regulation of recurrent excitation by D1 receptors in prefrontal circuits. Proc Natl Acad Sci U S A 98:295–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao W-J, Wang Y, Goldman-Rakic PS (2003) Dopamine modulation of perisomatic and peridendritic inhibition in prefrontal cortex. J Neurosci 23:1622–1630

    CAS  PubMed  Google Scholar 

  • Giguere M, Goldman-Rakic PS (1988) Mediodorsal nucleus: areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. J Comp Neurol 277:195–213

    Article  CAS  PubMed  Google Scholar 

  • Goldman PS (1971) Functional development of the prefrontal cortex in early life and the problem of neuronal plasticity. Exp Neurol 32:366–387

    Article  CAS  PubMed  Google Scholar 

  • Goldman PS (1976) The role of experience in recovery of function following orbital prefrontal lesions in infant monkeys. Neuropsychologia 14:401–412

    Article  CAS  PubMed  Google Scholar 

  • Goldman PS, Nauta WJH (1977) Columnar distribution of cortico-cortical fibers in the frontal association, limbic, and motor cortex of the developing rhesus monkey. Brain Res 122:393–413

    Article  CAS  PubMed  Google Scholar 

  • Goldman PS, Rosvold HE (1970) Localization of function within the dorsolateral prefrontal cortex of the rhesus monkey. Exp Neurol 27:291–304

    Article  CAS  PubMed  Google Scholar 

  • Goldman PS, Rosvold HE, Mishkin M (1970a) Evidence for behavioral impairment following prefrontal lobectomy in the infant monkey. J Comp Physiol Psychol 70:454–463

    Article  CAS  PubMed  Google Scholar 

  • Goldman PS, Rosvold HE, Mishkin M (1970b) Selective sparing of function following prefrontal lobectomy in infant monkeys. Selective sparing of function following prefrontal lobectomy in infant monkeys. Exp Neurol 29:221–226

    Article  CAS  PubMed  Google Scholar 

  • Goldman PS, Rosvold HE, Vest B, Galkin TW (1971) Analysis of the delayed-alternation deficit produced by dorsolateral prefrontal lesions in the rhesus monkey. J Comp Physiol Psychol 77:212–220

    Article  CAS  PubMed  Google Scholar 

  • Goldman PS, Crawford HT, Stokes LP, Galkin TW, Rosvold HE (1974) Sex-dependent behavioral effects of cerebral cortical lesions in the developing rhesus monkey. Science 186:540–542

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1987) Circuitry of the prefrontal cortex and the regulation of behavior by representational knowledge. In: Plum F, Mountcastle V (eds) Handbook of physiology, vol 5. American Physiological Society, Bethesda, pp 373–417

    Google Scholar 

  • Goldman-Rakic PS (1995) Cellular basis of working memory. Neuron 14:477–485

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1996) Regional and cellular fractionation of working memory. Proc Natl Acad Sci U S A 93:13473–13480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goldman-Rakic PS (1999a) The “psychic” neuron of the cerebral cortex. Ann N Y Acad Sci 868:13–26

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1999b) The physiological approach: functional architecture of working memory and disordered cognition in schizophrenia. Biol Psychiatry 46:650–661

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS, Selemon LD, Schwartz ML (1984) Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience 12:719–743

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS, Leranth C, Williams SM, Mons N, Geffard M (1989) Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. Proc Natl Acad Sci U S A 86:9015–9019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goldman-Rakic PS, Lidow MS, Gallager DW (1990) Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex. J Neurosci 10:2125–2138

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS, Muly EC III, Williams GV (2000) D1 receptors in prefrontal cells and circuits. Brain Res Rev 31:295–301

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS, Castner SA, Svensson TH, Siever LJ, Williams GV (2004) Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology 174:3–16

    Article  CAS  PubMed  Google Scholar 

  • Gorelova N, Seamans JK, Yang CR (2002) Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex. J Neurophysiol 88:3150–3166

    Article  CAS  PubMed  Google Scholar 

  • Henze DA, Gonzalez-Burgos GR, Urban NN, Lewis DA, Barrionuevo G (2000) Dopamine increases excitability of pyramidal neuron in primate prefrontal cortex. J Neurophysiol 84:2799–2809

    CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1972) Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J Comp Neurol 146:421–450

    Article  CAS  PubMed  Google Scholar 

  • Jones EG, Burton H, Porter R (1975) Commissural and cortico-cortical “columns” in the somatic sensory cortex of primates. Science 190:572–574

    Article  CAS  PubMed  Google Scholar 

  • Joseph JP, Barone P (1987) Prefrontal unit activity during a delayed oculomotor task in the monkey. Exp Brain Res 67:460–468

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi Y (1995) Physiologic subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of the rat frontal cortex. J Neurosci 15:2638–2655

    CAS  PubMed  Google Scholar 

  • Kikuchi-Yorioka Y, Sawaguchi T (2000) Parallel visuospatial and audiospatial working memory processes in the monkey dorsolateral prefrontal cortex. Nat Neurosci 3:1075–1076

    Article  CAS  PubMed  Google Scholar 

  • Kojima S, Goldman-Rakic PS (1984) Functional analysis of spatially discriminative neurons in prefrontal cortex of rhesus monkey. Brain Res 291:229–240

    Article  CAS  PubMed  Google Scholar 

  • Krimer LS, Goldman-Rakic PS (2001) Prefrontal microcircuits: membrane properties and excitatory input of local, medium, and wide arbor interneurons. J Neurosci 21:3788–3796

    CAS  PubMed  Google Scholar 

  • Krimer LS, Jakab RL, Goldman-Rakic PS (1997) Quantitative three-dimensional analysis of the catecholaminergic innervation of identified neurons in the macaque prefrontal cortex. J Neurosci 17:7450–7461

    CAS  PubMed  Google Scholar 

  • Kritzer MF, Goldman-Rakic PS (1995) Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey. J Comp Neurol 359:131–143

    Article  CAS  PubMed  Google Scholar 

  • Kubota K, Niki H (1971) Prefrontal cortical unit activity and delayed alternation performance in monkeys. J Neurophysiol 34:337–347

    CAS  PubMed  Google Scholar 

  • Levitt JB, Lewis DA, Yoshioka T, Lund JS (1993) Topography of pyramidal neuron intrinsic connections in macaque monkey prefrontal cortex (areas 9 and 46). J Comp Neurol 338:360–376

    Article  CAS  PubMed  Google Scholar 

  • Levy R, Goldman-Rakic PS (2000) Segregation of working memory functions within the dorsolateral prefrontal cortex. Exp Brain Res 133:23–32

    Article  CAS  PubMed  Google Scholar 

  • Lidow MS, Goldman-Rakic PS, Gallager DW, Rakic P (1991) Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390. Neuroscience 40:657–671

    Article  CAS  PubMed  Google Scholar 

  • Livingston M, Hubel D (1988) Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240:740–749

    Article  Google Scholar 

  • Lund JS, Lewis DA (1993) Local circuit neurons of developing and mature macaque prefrontal cortex. Golgi and immunocytochemical characteristics. J Comp Neurol 328:282–312

    Article  CAS  PubMed  Google Scholar 

  • Macko KA, Jarvis CD, Kennedy C, Miyaoka M, Shinohara M, Sokoloff L, Mishkin M (1982) Mapping the primate visual system with 2-14C-deoxyglucose. Science 218:394–397

    Article  CAS  PubMed  Google Scholar 

  • Melchitzky DS, Sesack SR, Pucak ML, Lewis DA (1998) Synaptic targets of pyramidal neurons providing intrinsic horizontal connections in monkey prefrontal cortex. J Comp Neurol 390:211–224

    Article  CAS  PubMed  Google Scholar 

  • Mishkin M, Manning FJ (1978) Non-spatial memory after selective prefrontal lesions in monkeys. Brain Res 143:313–323

    Article  CAS  PubMed  Google Scholar 

  • Morel A, Bullier J (1990) Anatomical segregation of two cortical visual pathways in the macaque monkey. Vis Neurosci 4:555–578

    Article  CAS  PubMed  Google Scholar 

  • Muly EC III, Szigeti K, Goldman-Rakic PS (1998) D1 receptor in interneurons of macaque prefrontal cortex: distribution and subcellular localization. J Neurosci 18:10553–10565

    CAS  PubMed  Google Scholar 

  • Niki H (1974a) Differential activity of prefrontal units during right and left delayed response trials. Brain Res 70:346–349

    Article  CAS  PubMed  Google Scholar 

  • Niki H (1974b) Prefrontal unit activity during delayed alternation in the monkey. I. Relation to direction of response. Brain Res 68:185–196

    Article  CAS  PubMed  Google Scholar 

  • O’Scalaidhe SP, Wilson FAW, Goldman-Rakic PS (1997) Areal segregation of face-processing neurons in prefrontal cortex. Science 278:1135–1138

    Article  Google Scholar 

  • O’Scalaidhe SP, Wilson FAW, Goldman-Rakic PS (1999) Face-selective neurons during passive viewing and working memory performance of rhesus monkeys: evidence for intrinsic specialization of neuronal coding. Cereb Cortex 9:459–475

    Article  Google Scholar 

  • Owen AM, Evans AC, Petrides M (1996) Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: a positron emission tomography study. Cereb Cortex 6:31–38

    Article  CAS  PubMed  Google Scholar 

  • Paspalas CD, Goldman-Rakic PS (2005) Presynaptic D1 dopamine receptors in primate prefrontal cortex: target-specific expression in the glutamatergic synapse. J Neurosci 25:1260–1267

    Article  CAS  PubMed  Google Scholar 

  • Passingham R (1975) Delayed matching after selective prefrontal lesions in monkeys (Macaca mulatta). Brain Res 92:89–102

    Article  CAS  PubMed  Google Scholar 

  • Petrides M, Alivisatos B, Frey S (2002) Differential activation of the human orbital, mid-ventrolateral, and mid-dorsolateral prefrontal cortex during the processing of visual stimuli. Proc Natl Acad Sci U S A 99:5649–5654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pucak ML, Levitt JB, Lund JS, Lewis DA (1996) Patterns of intrinsic and associational circuitry in monkey prefrontal cortex. J Comp Neurol 376:614–630

    Article  CAS  PubMed  Google Scholar 

  • Rakic P (1988) Specification of cerebral cortical areas. Science 241:170–176

    Article  CAS  PubMed  Google Scholar 

  • Rao SG, Williams GV, Goldman-Rakic PS (1999) Isodirectional tuning of adjacent interneurons and pyramidal cells during working memory: evidence for microcolumnar organization in PFC. J Neurophysiol 81:1903–1916

    CAS  PubMed  Google Scholar 

  • Rao SG, Williams GV, Goldman-Rakic PS (2000) Destruction and creation of spatial tuning by disinhibition: GABAA blockade of prefrontal cortical neurons engaged by working memory. J Neurosci 20:485–494

    CAS  PubMed  Google Scholar 

  • Romanski LM (2004) Domain specificity in the primate prefrontal cortex. Cogn Affect Behav Neurosci 4:421–429

    Article  PubMed  Google Scholar 

  • Romanski LM, Goldman-Rakic PS (2002) An auditory domain in the primate prefrontal cortex. Nat Neurosci 5:15–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Romanski LM, Bates JF, Goldman-Rakic PS (1999a) Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 403:141–157

    Article  CAS  PubMed  Google Scholar 

  • Romanski LM, Tian B, Fritz J, Mishkin M, Goldman-Rakic PS, Rauschecker JP (1999b) Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat Neurosci 2:1131–1136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Romanski LM, Averbeck BB, Diltz M (2005) Neural representation of vocalizations in the primate ventrolateral prefrontal cortex. J Neurophysiol 93:734–747

    Article  PubMed  Google Scholar 

  • Romo R, Brody CD, Hernandez A, Lemus L (1999) Neuronal correlates of parametric working memory in the prefrontal cortex. Nature 399:470–473

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1991) D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251:947–950

    Article  CAS  PubMed  Google Scholar 

  • Schwartz ML, Goldman-Rakic PS (1984) Callosal and intrahemispheric connectivity of the prefrontal association cortex in rhesus monkey: relation between intraparietal and principal sulcal cortex. J Comp Neurol 226:403–420

    Article  CAS  PubMed  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5:776–794

    CAS  PubMed  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1988) Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J Neurosci 8:4049–4068

    CAS  PubMed  Google Scholar 

  • Sesack SR, Snyder CL, Lewis DA (1995) Axon terminals immunolabeled for dopamine or tyrosine hydroxylase synapse on GABA-immunoreactive dendrites in rat and monkey cortex. J Comp Neurol 363:264–280

    Article  CAS  PubMed  Google Scholar 

  • Shanks MF, Rockel AJ, Powell TPS (1975) The commissural fiber connections of the primary somatic sensory cortex. Brain Res 98:166–171

    Article  CAS  PubMed  Google Scholar 

  • Smiley JF, Levey AI, Ciliax BJ, Goldman-Rakic PS (1994) D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines. Proc Natl Acad Sci U S A 91:5720–5724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Urban NN, Gonzalez-Burgos G, Henze DA, Lewis DA, Barrionuevo G (2002) Selective reduction by dopamine of excitatory synaptic inputs to pyramidal neurons in primate prefrontal cortex. J Physiol 593:707–712

    Article  Google Scholar 

  • Webster MJ, Bachevalier J, Ungerleider LG (1994) Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb Cortex 4:470–483

    Article  CAS  PubMed  Google Scholar 

  • Williams GV, Goldman-Rakic PS (1995) Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376:572–575

    Article  CAS  PubMed  Google Scholar 

  • Williams SM, Goldman-Rakic PS (1993) Characterization of the dopaminergic innervation of the primate frontal cortex using a dopamine-specific antibody. Cereb Cortex 3:199–222

    Article  CAS  PubMed  Google Scholar 

  • Williams SM, Goldman-Rakic PS (1998) Widespread origin of the primate mesofrontal dopamine system. Cereb Cortex 8:321–345

    Article  CAS  PubMed  Google Scholar 

  • Wilson FAW, O’Scalaidhe SP, Goldman-Rakic PS (1993) Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260:1955–1958

    Article  CAS  PubMed  Google Scholar 

  • Wilson FAW, O’Scalaidhe SP, Goldman-Rakic PS (1994) Functional synergism between putative γ-aminobutyrate-containing neurons and pyramidal neurons in prefrontal cortex. Proc Natl Acad Sci U S A 91:4009–4013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou F-M, Hablitz JJ (1999) Dopamine modulation of membrane and synaptic properties of interneurons in rat cerebral cortex. J Neurophysiol 81:967–976

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn D. Selemon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Selemon, L.D. (2015). Modular Organization of the Prefrontal Cortex: The Legacy of Patricia Goldman-Rakic. In: Casanova, M., Opris, I. (eds) Recent Advances on the Modular Organization of the Cortex. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9900-3_3

Download citation

Publish with us

Policies and ethics