Skip to main content

Abstract

Anthropogenic increases in nitrogen and phosphorus inputs to terrestrial and aquatic ecosystems have driven increases in eutrophication, the occurrence of ecosystem changes due to over-supply of nutrients. Eutrophic water bodies exhibit changes in species composition that often include algal blooms and oxygen depletion, with occasionally arresting images of fish kills or dead zones. Though dramatic and subtle consequences of eutrophication itself have been described for over 100 years, understanding of nutrients as the main drivers for this phenomenon is more recent. Modelling nutrient fate has reached a basic level of operability, with a general rule that freshwaters are limited in phosphorus (and hence respond to its addition), and terrestrial and marine systems are nitrogen limited. However, understanding of ecosystems responses such as species shifts or changes in primary productivity is still growing. Future work should incorporate more comprehensive metrics to quantify impacts of eutrophication on ecosystems – and the human systems that depend on them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcamo J, Shaw RW, Hordijk L (1990) The RAINS model of acidification: science and strategies in Europe. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Anderson DM (1989) Toxic algal blooms and red tides: a global perspective. In: Okaichi T, Anderson DM, Nemoto T (eds) Red tides: biology, environmental science and toxicology. Elsevier, New York, pp 11–16

    Google Scholar 

  • Azevedo LB, Henderson AD, van Zelm R, Jolliet O, Huijbregts MAJ (2013a) Assessing the importance of spatial variability versus model choices in life cycle impact assessment: the case of freshwater eutrophication in Europe. Environ Sci Technol 47:13565–13570

    Article  CAS  Google Scholar 

  • Azevedo LB, van Zelm R, Elshout PMF et al (2013b) Species richness–phosphorus relationships for lakes and streams worldwide. Glob Ecol Biogeogr 22:1304–1314. doi:10.1111/geb.12080

    Article  Google Scholar 

  • Bare JC, Norris GA, Pennington DW, McKone TE (2003) TRACI: the tool for the reduction and assessment of chemical and other environmental impacts. J Ind Ecol 6:49–78

    Article  Google Scholar 

  • Beusen AHW, Klepper O, Meinardi CR (1995) Modelling the flow of nitrogen and phosphorus in Europe: from loads to coastal seas. Water Sci Technol 31:141–145. doi:10.1016/0273-1223(95)00364-S

    Article  CAS  Google Scholar 

  • Boehrer B, Schultze M (2008) Stratification of lakes. Rev Geophys 46(2). doi:10.1029/2006RG000210

  • Bouwman AF, Beusen A, Billen G (2009) Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Glob Biogeochem Cycles 23:GB0A04. doi:10.1029/2009GB003576

    Article  Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL et al (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568

    Article  Google Scholar 

  • Cederwall H, Elmgren R (1990) Biological effects of eutrophication in the Baltic Sea, particularly the coastal zone. Ambio Stockholm 19:109–112

    Google Scholar 

  • Conroy JD, Boegman L, Zhang H et al (2010) “Dead Zone” dynamics in Lake Erie: the importance of weather and sampling intensity for calculated hypolimnetic oxygen depletion rates. Aquat Sci 73:289–304. doi:10.1007/s00027-010-0176-1

    Article  Google Scholar 

  • Curran MA, de Baan L, De Schryver AM et al (2011) Toward meaningful end points of biodiversity in life cycle assessment. Environ Sci Technol 45:70–79. doi:10.1021/es101444k

    Article  CAS  Google Scholar 

  • De Haan BJ, Klepper O, Sauter FJ et al (1996) The CARMEN status report 1995. RIVM Report 461501005

    Google Scholar 

  • Diaz RJ (2001) Overview of hypoxia around the world. J Environ Qual 30:275. doi:10.2134/jeq2001.302275x

    Article  CAS  Google Scholar 

  • EC-JRC (2010a) Framework and requirements for life cycle impact assessment models and indicators. ILCD Handbook—International Reference Life Cycle Data System, European Union EUR24571EN. http://lct.jrc.ec.europa.eu/

  • EC-JRC (2010b) Analysis of existing environmental impact assessment methodologies for use in life cycle assessment. ILCD Handbook—International Reference Life CycleData System, European Union EUR24571EN. http://lct.jrc.ec.europa.eu/

  • EC-JRC (2011) Recommendations based on existing environmental impact assessment models and factors for life cycle assessment in European context. ILCD Handbook—International Reference Life Cycle Data System, European Union EUR24571EN. http://lct.jrc.ec.europa.eu/

  • EEA (2009) EMEP/EEA air pollutant emission inventory guidebook: technical guidance to prepare national emission inventories. European Communities, Luxembourg

    Google Scholar 

  • Elser JJ, Fagan WF, Denno RF et al (2000) Nutritional constraints in terrestrial and freshwater food webs. Nature 408:578–580. doi:10.1038/35046058

    Article  CAS  Google Scholar 

  • Fekete BM, Vörösmarty CJ, Grabs W (2002) High-resolution fields of global runoff combining observed river discharge and simulated water balances. Glob Biogeochem Cycles 16(15):1

    Google Scholar 

  • Finnveden G, Potting J (1999) Eutrophication as an impact category. Int J Life Cycle Assess 4:311–314. doi:10.1007/BF02978518

    Article  CAS  Google Scholar 

  • Frischknecht R, Steiner R, Jungbluth N (2009) The ecological scarcity method – eco-factors 2006: a method for impact assessment in LCA. Federal Office for the Environment FOEN, Bern

    Google Scholar 

  • Galloway JN (2003) 8.12 – the global nitrogen cycle. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. Pergamon, Oxford, pp 557–583

    Chapter  Google Scholar 

  • Goedkoop M, Spriensma R (2000) The Eco-indicator 99: a damage oriented method for life cycle assessment. PRé Consultants BV, Amersfoort

    Google Scholar 

  • Goedkoop M, Heijungs R, Huijbregts MAJ et al (2009) ReCiPe 2008: a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level; Report 1: Characterisation. VROM Den Haag 2012

    Google Scholar 

  • Goldman CR (1988) Primary productivity, nutrients, and transparency during the early onset of eutrophication in ultra-oligotrophic lake Tahoe, California-Nevada. Limnol Oceanogr 33:1321–1333. doi:10.2307/2837293

    Article  CAS  Google Scholar 

  • Grouzet P, Leonard J, Nixon SW et al (2000) Nutrients in European ecosystems. European Environment Agency, Copenhagen

    Google Scholar 

  • Guinée J, Gorrée M, Heijungs R et al (2002) Handbook on life cycle assessment: operational guide to the ISO standards. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hansson M, Axe P, Andersson L (2009) Extent of anoxia and hypoxia in the Baltic Sea, 1960–2009. Swedish Meteorological and Hydrological Institute (SMHI)

    Google Scholar 

  • Hauschild MZ, Wenzel H (1998) Environmental assessment of products vol 2: scientific background. Chapman & Hall/Kluwer Academic Publishers, London/Hingham, 1997. ISBN 0-412-80810-2

    Google Scholar 

  • Heijungs R, Guinée JB, Huppes G et al (1992) Environmental life cycle assessment of products: guide and background. Center of Environmental Science (CML), Leiden

    Google Scholar 

  • Helmes RJK, Huijbregts MAJ, Henderson AD, Jolliet O (2012) Spatially explicit fate factors of phosphorous emissions to freshwater at the global scale. Int J Life Cycle Assess 17:646–654. doi:10.1007/s11367-012-0382-2

    Article  CAS  Google Scholar 

  • Hertwich EG, Hammitt JK, Pease WS (2000) A theoretical foundation for life-cycle assessment: recognizing the role of values in environmental decision making. J Ind Ecol 4:13–28. doi:10.1162/108819800569267

    Article  Google Scholar 

  • Hornung MW, Ineson P, Bull KR et al (1994) Impacts of nitrogen deposition in terrestrial ecosystems. United Kingdom Review Group, London

    Google Scholar 

  • Huijbregts MAJ, Seppälä J (2000) Towards region-specific, European fate factors for airborne nitrogen compounds causing aquatic eutrophication. Int J Life Cycle Assess 5:65–67. doi:10.1007/BF02979719

    Article  CAS  Google Scholar 

  • Huijbregts MAJ, Seppälä J (2001) Life cycle impact assessment of pollutants causing aquatic eutrophication. Int J Life Cycle Assess 6:339–343, doi: 09483349

    Article  CAS  Google Scholar 

  • Huijbregts MAJ, Schöpp W, Verkuijlen E et al (2000) Spatially explicit characterisation of acidifying and eutrophying air pollution in life-cycle assessment. J Ind Ecol 4:75–92. doi:10.1162/108819800300106393

    Article  CAS  Google Scholar 

  • Huijbregts MAJ, Hellweg S, Hertwich E (2011) Do we need a paradigm shift in life cycle impact assessment? Environ Sci Technol 45:3833–3834. doi:10.1021/es200918b

    Article  CAS  Google Scholar 

  • Itsubo N, Inaba A (2003) A new LCIA method: LIME has been completed. Int J Life Cycle Assess 8:305–305. doi:10.1007/BF02978923

    Article  Google Scholar 

  • Jolliet O, Margni M, Charles R et al (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8:324–330

    Article  Google Scholar 

  • Jørgensen BB, Richardson K (1996) Eutrophication in coastal marine ecosystems. Coastal Estuarine Stud 52:1–273. doi:10.1029/CE052

    Article  Google Scholar 

  • Kemna R, van Elburg M, Li W, van Holsteijn R (2005) MEEuP: methodology report. 188

    Google Scholar 

  • Klepper O, Beusen AH, Meinardi C (1995) Modelling the flow of nitrogen and phosphorus in Europe: from loads to coastal seas. National Institute of Public Health and Environmental Protection (RIVM), Bilthoven

    Google Scholar 

  • Kristensen P, Hansen HO (1994) European rivers and lakes. Assessment of their environmental state. Environmental Monographs Copenhagen, Denmark: European Environment Agency. 122 pages. http://www.eea.europa.eu/publications/87-90198-01-8

  • Kros J, Reinds GJ, De Vries W et al (1995) Modelling of soil acidity and nitrogen availability in natural ecosystems in response to changes in acid deposition and hydrology. SC-DLO, report 95. Wageningen, The Netherlands: Winand Staring Centre for Integrated Land, Soil and Water Research. 90 pages. http://library.wur.nl/WebQuery/wurpubs/302176

  • Latour JB, Staritsky IG, Alkemade JRM, Wiertz J (1997) De natuurplanner, Decision support system natuur en mileu. Report Number 711901019. National Institute of Public Health and Environmental Protection (RIVM), Bilthoven

    Google Scholar 

  • Levine SN, Stainton MP, Schindler DW (1986) A radiotracer study of phosphorus cycling in a eutrophic Canadian Shield Lake, Lake 227, Northwestern Ontario. Can J Fish Aquat Sci 43:366–378. doi:10.1139/f86-047

    Article  CAS  Google Scholar 

  • Lindfors L-G, Christiansen K, Hoffman L et al (1995) Nordic guidelines on life-cycle assessment. Nord 1995:20. Nordic Council of Ministers, Copenhagen, Denmark

    Google Scholar 

  • Liu D, Keesing JK, He P et al (2013) The world’s largest macroalgal bloom in the Yellow Sea, China: formation and implications. Estuar Coast Shelf Sci 129:2–10. doi:10.1016/j.ecss.2013.05.021

    Article  CAS  Google Scholar 

  • Margni M, Gloria T, Bare JC et al (2008) Guidance on how to move from current practice to recommended practice in life cycle impact assessment. UNEP/SETAC Life Cycle Initiative. Life Cycle Impact Assessment Programme. http://www.lifecycleinitiative.org/wp-content/uploads/2012/12/2008%20-%20Guidance%20to%20move%20to%20LCA.pdf

  • McGroddy ME, Daufresne T, Hedin LO (2004) Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology 85:2390–2401. doi:10.1890/03-0351

    Article  Google Scholar 

  • MEA (2005) Ecosystems and human well-being. Island Press, Washington, DC

    Google Scholar 

  • Mortimer CH (1942) The exchange of dissolved substances between mud and water in lakes. J Ecol 30:147–201. doi:10.2307/2256691

    Article  CAS  Google Scholar 

  • NAS (1969) Eutrophication: causes, consequences, correctives; proceedings of a symposium. U.S. National Academy of Sciences, Washington, DC

    Google Scholar 

  • Nilsson J, Grennfelt P (1988) Critical loads for sulphur and nitrogen. Report from a workshop at Skokloster, Sweden, 19–24 Mar 1988. Miljörapport 1998: 15. Nordic Council of Ministers, Copenhagen

    Google Scholar 

  • Norris GA (2003) Impact characterisation in the tool for the reduction and assessment of chemical and other environmental impacts: methods for acidification, eutrophication, and ozone formation. J Ind Ecol 6:79–101

    Article  Google Scholar 

  • NRC (1992) Restoration of aquatic ecosystems: science, technology, and public policy. National Research Council, Washington, DC

    Google Scholar 

  • Obenour DR, Michalak AM, Zhou Y, Scavia D (2012) Quantifying the impacts of stratification and nutrient loading on hypoxia in the Northern Gulf of Mexico. Environ Sci Technol 46:5489–5496. doi:10.1021/es204481a

    Article  CAS  Google Scholar 

  • OECD (1982) Eutrophication of waters: monitoring, assessment and control. Organization for Economic Cooperation and Development, Paris

    Google Scholar 

  • Paerl HW, Fulton RS III, Moisander PH, Dyble J (2001) Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci World J 1:76–113. doi:10.1100/tsw.2001.16

    Article  CAS  Google Scholar 

  • Payet J (2006) Report describing a method for the quantification of impacts on aquatic freshwater ecosystems resulting from different stressors (e.g., toxic substances, eutrophication, etc). Novel Methods for Integrated Risk Assessment of Cumulative Stressors in Europe (NOMIRACLE). Report Number 003956. École Polytechnique Fédérale de Lausanne. http://nomiracle.jrc.ec.europa.eu/webapp/ViewPublicDeliverables.aspx

  • Posch M, de Smet PAM, Hettelingh J-P, Downing RJ (1995) Calculation and mapping of critical thresholds in Europe. Status Report 1995. National Institute of Public Health and Environmental Protection (RIVM), Bilthoven

    Google Scholar 

  • Posch M, Seppälä J, Hettelingh J-P et al (2008) The role of atmospheric dispersion models and ecosystem sensitivity in the determination of characterisation factors for acidifying and eutrophying emissions in LCIA. Int J Life Cycle Assess 13:477–486. doi:10.1007/s11367-008-0025-9

    Article  CAS  Google Scholar 

  • Potting J (2000) Spatial differentiation in life cycle impact assessment a framework, and site-dependent factors to assess acidification and human exposure. Int J Life Cycle Assess 5:77. doi:10.1007/BF02979725

    Article  Google Scholar 

  • Potting J, Blok K (1994) Spatial aspects of life-cycle impact assessment. In: Udo de Haes HA, Jensen AA, Klöpffer W, Lindfors L-G (eds) Integrating impact assessment into LCA. Society of Environmental Toxicology & Chemistry, Brussels, pp 91–98

    Google Scholar 

  • Potting J, Hauschild MZ (2005) Background for spatial differentiation in LCA impact assessment – the EDIP2003 methodology. Environmental Project No. 996 2005. Danish Ministry of the Environment

    Google Scholar 

  • Potting J, Schöpp W, Blok K, Hauschild M (1998a) Comparison of the acidifying impact from emissions with different regional origin in life-cycle assessment. J Hazard Mater 61:155–162, 16/S0304-3894(98)00119-8

    Article  CAS  Google Scholar 

  • Potting J, Schöpp W, Blok K, Hauschild MZ (1998b) Site-dependent life‐cycle impact assessment of acidification. J Ind Ecol 2:63–87. doi:10.1162/jiec.1998.2.2.63

    Article  CAS  Google Scholar 

  • Redfield AC (1934) On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In: Cole FJ (ed) James Johnstone memorial volume. University Press of Liverpool, Liverpool, pp 176–192

    Google Scholar 

  • Scheffer M, Carpenter S, Foley JA et al (2001) Catastrophic shifts in ecosystems. Nature 413:591–596. http://dx.doi.org.www5.sph.uth.tmc.edu:2048/10.1038/35098000

    Article  CAS  Google Scholar 

  • Schindler DW (1977) Evolution of phosphorus limitation in lakes. Science 195:260–262

    Article  CAS  Google Scholar 

  • Schindler DW (2006) Recent advances in the understanding and management of eutrophication. Limnol Oceanogr 51:356–363

    Article  Google Scholar 

  • Seppälä J, Posch M, Johansson M, Hettelingh J-P (2006) Country-dependent characterisation factors for acidification and terrestrial eutrophication based on accumulated exceedance as an impact category indicator. Int J Life Cycle Assess 11:403–416. doi:10.1065/lca2005.06.215

    Article  Google Scholar 

  • Shannon JD, Clark TL (1985) User’s guide for the advanced statistical trajectory regional air pollution (ASTRAP) model. Atmospheric Sciences Research Laboratory, Office of Research and Development, Environmental Protection Agency, Lemont

    Google Scholar 

  • Smith VH (1983) Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221:669–671. doi:10.1126/science.221.4611.669

    Article  CAS  Google Scholar 

  • Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 100:179–196. doi:10.1016/S0269-7491(99)00091-3

    Article  CAS  Google Scholar 

  • Steen B (1999a) A systematic approach to environmental priority strategies in product development (EPS). Version 2000–General system characteristics. Chalmers University of Technology, Gothenburg

    Google Scholar 

  • Steen B (1999b) A systematic approach to environmental priority strategies in product development (EPS). Version 2000–Models and data of the default method. Chalmers University of Technology, Gothenburg

    Google Scholar 

  • Sterner RW (2008) On the phosphorus limitation paradigm for lakes. Int Rev Hydrobiol 93:433–445. doi:10.1002/iroh.200811068

    Article  CAS  Google Scholar 

  • Struijs J, Beusen AHW, van Jaarsveld HA, Huijbregts MAJ et al (2009) Aquatic eutrophication (chapter 6). In: Goedkoop M, Heijungs R, Huijbregts MAJ (eds) ReCiPe 2008: a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level; Report 1: Characterisation. Ministry of Housing, Spatial Planning, and Environment (VROM), The Netherlands, p 132

    Google Scholar 

  • Struijs J, Beusen A, Zwart D, Huijbregts M (2010a) Characterisation factors for inland water eutrophication at the damage level in life cycle impact assessment. Int J Life Cycle Assess 16:59–64. doi:10.1007/s11367-010-0232-z

    Article  Google Scholar 

  • Struijs J, De Zwart D, Posthuma L et al (2010b) Field sensitivity distribution of macroinvertebrates for phosphorus in inland waters. Integr Environ Assess Manag 7:280–286. doi:10.1002/ieam.141

    Article  Google Scholar 

  • Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P (2000) Invertébrés d’eau douce: systématique, biologie, écologie. CNRS Editions, Paris

    Google Scholar 

  • Tilman D (1999) Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc Natl Acad Sci U S A 96:5995–6000

    Article  CAS  Google Scholar 

  • Toffoleto L, Bulle C, Godin J et al (2007) LUCAS – a new LCIA method used for a Canadian-specific context (10 pp). Int J Life Cycle Assess 12:93–102. doi:10.1065/lca2005.12.242

    Article  Google Scholar 

  • Turner RE, Rabalais NN (2003) Linking landscape and water quality in the Mississippi river basin for 200 years. BioScience 53:563–572. doi:10.1641/0006-3568(2003)053[0563:LLAWQI]2.0.CO;2

    Article  Google Scholar 

  • Udo de Haes HA, Finnveden G, Goedkoop M et al (2002) Life cycle impact assessment: striving towards best practice. SETAC Press, Pensacola

    Google Scholar 

  • UNEP (2003) Evaluation of environmental impacts in life cycle assessment. United Nations Environment Program Division of Technology, Industry, and Economics, Rome

    Google Scholar 

  • UNEP/SETAC (2005) Life cycle approaches: the road from analysis to practice. United Nations Environment Program, Division of Technology, Industry and Economics (DTIE), Paris

    Google Scholar 

  • Van Jaarsveld JA (1995) Modelling the long-term atmospheric behaviour of pollutants on various spatial scales. Ph.D. thesis, Universiteit Utrecht

    Google Scholar 

  • Van Zelm R, Huijbregts MAJ, Harbers JV et al (2007a) Uncertainty in msPAF-based ecotoxicological effect factors for freshwater ecosystems in life cycle impact assessment. Integr Environ Assess Manag 3:203–210. doi:10.1897/IEAM_2006-013.1

    Article  Google Scholar 

  • Van Zelm R, Huijbregts MAJ, van Jaarsveld HA et al (2007b) Time horizon dependent characterisation factors for acidification in life-cycle assessment based on forest plant species occurrence in Europe. Environ Sci Technol 41:922–927. doi:10.1021/es061433q

    Article  Google Scholar 

  • Vermeire TG, Jager DT, Bussian B et al (1997) European Union System for the Evaluation of Substances (EUSES). Principles and structure. Chemosphere 34:1823–1836. doi:10.1016/S0045-6535(97)00017-9

    Article  CAS  Google Scholar 

  • Vermeire T, Rikken M, Attias L et al (2007) European Union System for the evaluation of substances: the second version. Chemosphere 59:473–485. doi:10.1016/j.chemosphere.2005.01.062

    Article  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of earth’s ecosystems. Science 277:494–499. doi:10.1126/science.277.5325.494

    Article  CAS  Google Scholar 

  • Vollenweider RA (1968) Scientific fundamentals of the eutrophication of lakes and flowing waters, with a particular reference to phosphorus and nitrogen as factor in eutrophication. Organization for Economic Cooperation and Development, Paris

    Google Scholar 

  • Von Liebig J (1855) Principles of agricultural chemistry with special reference to the late researches made in England. In: Pomeroy LR (ed) Cycles of essential elements, Benchmark papers in ecology. Dowden, Hutchinson, and Ross, Stroudsburg, pp 11–28, United Kingdom

    Google Scholar 

  • Weber CA (1907) Aufbau und Vegetation der Moore Norddeutschlands. Beibl Bot Jahrb 90:19–34

    Google Scholar 

  • Wenzel H, Hauschild M, Alting L (1997) Environmental assessment of products vol 1: methodology, tools and case studies in product development. Chapman & Hall/Kluwer Academic Publishers, London/Hingham. ISBN 0 412 80800 5

    Book  Google Scholar 

  • Withers PJA, Jarvie HP (2008) Delivery and cycling of phosphorus in rivers: a review. Sci Total Environ 400:379–395. doi:10.1016/j.scitotenv.2008.08.002

    Article  CAS  Google Scholar 

  • Wolters V, Bengtsson J, Zaitsev AS (2006) Relationship among the species richness of different taxa. Ecology 87:1886–1895. doi:10.1890/0012-9658(2006)87[1886:RATSRO]2.0.CO;2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Henderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Henderson, A.D. (2015). Eutrophication. In: Hauschild, M., Huijbregts, M. (eds) Life Cycle Impact Assessment. LCA Compendium – The Complete World of Life Cycle Assessment. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9744-3_10

Download citation

Publish with us

Policies and ethics