Skip to main content

Structural Chemistry and Molecular Modeling in the Design of DPP4 Inhibitors

  • Conference paper
  • First Online:
Multifaceted Roles of Crystallography in Modern Drug Discovery

Abstract

Inhibition of dipeptidyl peptidase IV (DPP-4) is an established approach for the treatment of type 2 diabetes. In 2006, Sitagliptin phosphate, a potent, orally bioavailable and highly selective small molecule DPP-4 inhibitor was approved by the FDA as once daily novel drug for the treatment of type 2 diabetes. Given the clinical success of sitagliptin our laboratories have been interested in generating analogues amenable for once-weekly dosing, to increase medication adherence. The first of such compounds was approved for preclinical and clinical development in 2008. During the back-up development stages, structural chemistry was used to generate new ideas, as well as evaluate in-silico proposals and screening results, and used to guide and significantly accelerate the drug discovery process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mentlein R, Gallwitz B, Schmidt WE (1993) Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7–36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 214(3):829–835

    Article  CAS  PubMed  Google Scholar 

  2. Kieffer TJ, McIntosh CH, Pederson RA (1995) Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 136(8):3585–3586

    CAS  PubMed  Google Scholar 

  3. Deacon CF, Johnsen AH, Holst JJ (1995) Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metab 80(3):952–957

    CAS  PubMed  Google Scholar 

  4. Deacon CF (2004) Therapeutic strategies based on glucagon-like peptide 1. Diabetes 53(9):2181–2189

    Article  CAS  PubMed  Google Scholar 

  5. Zerilli T, Pyon EY (2007) Sitagliptin phosphate: a DPP-4 inhibitor for the treatment of type 2 diabetes mellitus. Clin Ther 29(12):2614–2634

    Article  CAS  PubMed  Google Scholar 

  6. Deacon CF, Carr RD, Holst JJ (2008) DPP-4 inhibitor therapy: new directions in the treatment of type 2 diabetes. Front Biosci 13(5):1780–1794

    Article  CAS  PubMed  Google Scholar 

  7. Kim D, Wang L, Beconi M et al (2005) (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem 48(1):141–151

    Article  CAS  PubMed  Google Scholar 

  8. Thornberry NA, Weber AE (2007) Discovery of JANUVIA™ (Sitagliptin), a selective dipeptidyl peptidase IV inhibitor for the treatment of type2 diabetes. Curr Top Med Chem 7(6):557–568

    Article  CAS  PubMed  Google Scholar 

  9. Edmondson SD, Mastracchio A, Mathvink RJ et al (2006) (2S,3S)-3-amino-4-(3,3-difluoropyrrolidin-1-yl)-N, N-dimethyl-4-oxo-2-(4-[1,2,4]triazolo[1,5-a]-pyridin-6-ylphenyl) butanamide: a selective alpha-amino amide dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem 49(12):3614–3627

    Article  CAS  PubMed  Google Scholar 

  10. Biftu T, Scapin G, Singh S et al (2007) Rational design of a novel, potent, and orally bioavailable cyclohexylamine DPP-4 inhibitor by application of molecular modeling and X-ray crystallography of sitagliptin. Bioorg Med Chem Lett 17(12):3384–3387

    Article  CAS  PubMed  Google Scholar 

  11. Gao YD, Feng D, Sheridan RP et al (2007) Modeling assisted rational design of novel, potent, and selective pyrrolopyrimidine DPP-4 inhibitors. Bioorg Med Chem Lett 17(12):3877–3879

    Article  CAS  PubMed  Google Scholar 

  12. Edmondson SD, Mastracchio A, Cox JM et al (2009) Aminopiperidine-fused imidazoles as dipeptidyl peptidase-IV inhibitors. Bioorg Med Chem Lett 19(15):4097–4101

    Article  CAS  PubMed  Google Scholar 

  13. Rosenblum JS, Kozarich JW (2003) Prolyl peptidases: a serine protease subfamily with high potential for drug discovery. Curr Opin Chem Biol 7(4):496–504

    Article  CAS  PubMed  Google Scholar 

  14. Chen WT, Kelly T, Ghersi G (2003) DPPIV, seprase, and related serine peptidases in multiple cellular functions. Curr Top Dev Biol 54:207–232

    Article  CAS  PubMed  Google Scholar 

  15. Rummey C, Metz G (2007) Homology models of dipeptidyl peptidases 8 and 9 with a focus on loop predictions near the active site. PROTEINS: Struct Funct Bioinf 66(1):160–171

    Article  CAS  Google Scholar 

  16. Kopcho LM, Kim YB, Wang A et al (2005) Probing prime substrate binding sites of human dipeptidyl peptidase-IV using competitive substrate approach. Arch Biochem Biophys 436(2):367–376

    Article  CAS  PubMed  Google Scholar 

  17. Bjelke JR, Christensen J, Branner S et al (2004) Tyrosine 547 constitutes an essential part of the catalytic mechanism of dipeptidyl peptidase IV. J Biol Chem 279(33):34691–34697

    Article  CAS  PubMed  Google Scholar 

  18. Longenecker KL, Stewart KD, Madar DJ et al (2006) Crystal structures of DPP-IV (CD26) from rat kidney exhibit flexible accommodation of peptidase-selective inhibitors. Biochemistry 45(24):7474–7482

    Article  CAS  PubMed  Google Scholar 

  19. Biftu T, Qian X, Chen P et al (2013) Novel tetrahydropyran analogs as dipeptidyl peptidase IV inhibitors: Profile of clinical candidate (2R,3S,5R)-2- (2,5-difluorophenyl)-5-(4,6-dihydropyrrolo [3,4-c]pyrazol-5-(1H)-yl)tetrahydro-2H-pyran-3-amine (23). Bioorg Med Chem Lett 19:5361–5366

    Article  Google Scholar 

  20. Biftu T, Sinha-Roy R, Chen P et al (2014) Omarigliptin (MK-3102): a novel long-acting DPP-4 inhibitor for once-weekly treatment of type 2 diabetes. J Med Chem 57(8):3205–3212

    Article  CAS  PubMed  Google Scholar 

  21. DiMasi AJ, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22(2):151–185

    Article  PubMed  Google Scholar 

  22. DiMasi JA, Grabowski HG (2007) The cost of biopharmaceutical R&D: is biotech different? Manag Decis Econ 28(4–5):469–479

    Article  Google Scholar 

  23. Morgan S, Grootendorst P, Lexchin J et al (2011) The cost of drug development: a systematic review. Health Policy 100(1):4–17

    Article  PubMed  Google Scholar 

  24. Kuhlmann J (1999) Alternative strategies in drug development: clinical pharmacological aspects. Int J Clin Pharmacol Ther 37(12):575–583

    CAS  PubMed  Google Scholar 

  25. Hughes JP, Rees S, Kalindjian SB, Philpott KL (2011) Principles of early drug discovery. Br J Pharmacol 162(6):1239–1249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kumar A, Voet A, Zhang KY (2012) Fragment based drug design: from experimental to computational approaches. Curr Med Chem 19(30):5128–5147

    Article  CAS  PubMed  Google Scholar 

  27. Guido RV, Oliva G, Andricopulo AD (2011) Modern drug discovery technologies: opportunities and challenges in lead discovery. Comb Chem High Throughput Screen 14(10):830–839

    Article  CAS  PubMed  Google Scholar 

  28. Ciociola AA, Cohen LB, Prasad Kulkarni P (2014) How drugs are developed and approved by the FDA: current process and future directions. Am J Gastroenterol 109(5):620–623

    Article  PubMed  Google Scholar 

  29. Sun H, Tawa G, Wallqvist A (2012) Classification of scaffold-hopping approaches. Drug Disc Today 17(7–8):310–324

    Article  CAS  Google Scholar 

  30. Rasmussen HB, Branner S, Wiberg FC, Wagtmann NR (2003) Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nat Struct Biol 10:19–25

    Article  CAS  PubMed  Google Scholar 

  31. Nabeno M, Akahoshi F, Kishida H et al (2013) A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem Biophys Res Commun 434:191–196

    Article  CAS  PubMed  Google Scholar 

  32. Villhauer EB, Brinkman JA, Naderi GB et al (2003) 1-[[(3-hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrrolidine: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. J Med Chem 46(13):2774–2789

    Article  CAS  PubMed  Google Scholar 

  33. Augeri DJ, Robl JA, Betebenner DA et al (2005) Discovery and preclinical profile of Saxagliptin (BMS-477118): a highly potent, long-acting, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem 48(15):5025–5037

    Article  CAS  PubMed  Google Scholar 

  34. Metzler WJ, Yanchunas J, Weigelt J et al (2008) Involvement of DPP-IV catalytic residues in enzyme-saxagliptin complex formation. Protein Sci 17:240–250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Feng J, Zhang Z, Wallace MB et al (2007) Discovery of alogliptin: a potent, selective, bioavailable, and efficacious inhibitor of dipeptidyl peptidase IV. J Med Chem 50(10):2297–2300

    Article  CAS  PubMed  Google Scholar 

  36. Eckhardt M, Langkopf E, Mark M et al (2007) 8-(3-(R)-aminopiperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydropurine-2,6-dione (BI 1356), a highly potent, selective, long-acting, and orally bioavailable DPP-4 inhibitor for the treatment of type 2 diabetes. J Med Chem 50:6450–6453

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thanks all the teams that worked on the DPP4 inhibitor programs over the years, especially the chemistry and biology leaders, Ann E Weber and Nancy A. Thornberry. Special thanks to Hubert Josien, Dmitri Pissarnitski and Wen Lian Wu, whose molecules are discussed in the paper. Use of the IMCA-CAT beamline 17-ID at the Advanced Photon Source was supported by the companies of the Industrial Macromolecular Crystallography Association through a contract with Hauptman-Woodward Medical Research Institute. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Scapin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Scapin, G. (2015). Structural Chemistry and Molecular Modeling in the Design of DPP4 Inhibitors. In: Scapin, G., Patel, D., Arnold, E. (eds) Multifaceted Roles of Crystallography in Modern Drug Discovery. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9719-1_5

Download citation

Publish with us

Policies and ethics