Skip to main content

Adventures in Small Molecule Fragment Screening by X-ray Crystallography

  • Conference paper
  • First Online:
Multifaceted Roles of Crystallography in Modern Drug Discovery

Abstract

Since its conception in the early 1990s, fragment-based drug discovery (FBDD) has become established as a powerful tool for identifying new, chemically tractable pharmacophores. Unlike traditional methods that focus primarily on initial potency, FBDD stresses efficiency of binding and exploration of a highly diverse chemical space. Small fragment library sizes (∼1,000 compounds) and the weak binding affinity of fragments have spurred the use of biophysical methods not readily applicable to screening of traditional compound libraries (greater than 100,000 compounds). X-ray crystallography is a powerful, yet under-appreciated, biophysical method for systematic identification of small molecule binding and discovery of potential inhibitory sites in a macromolecular target. Indeed, due to tremendous improvements in methodologies and technologies involved in X-ray data collection and analysis, it is now possible to collect data on a complete fragment library for a given macromolecular target during a single trip to a current generation synchrotron. Here we highlight some key insights and innovations learned from fragment screening campaigns targeting influenza and HIV-1 polymerases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6:211–219

    Article  CAS  PubMed  Google Scholar 

  2. Hesterkamp T, Whittaker M (2008) Fragment-based activity space: smaller is better. Curr Opin Chem Biol 12:260–268

    Article  CAS  PubMed  Google Scholar 

  3. Erlanson DA, Wells JA, Braisted AC (2004) Tethering: fragment-based drug discovery. Annu Rev Biophys Biomol Struct 33:199–223

    Article  CAS  PubMed  Google Scholar 

  4. Bauman JD, Patel D, Arnold E (2012) Fragment screening and HIV therapeutics. Top Curr Chem 317:181–200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Begley DW, Davies DR, Hartley RC, Hewitt SN, Rychel AL, Myler PJ, Van Voorhis WC, Staker BL, Stewart LJ (2011) Probing conformational states of glutaryl-CoA dehydrogenase by fragment screening. Acta Crystallogr Sect F: Struct Biol Cryst Commun 67:1060–1069

    Article  CAS  Google Scholar 

  6. Howard N, Abell C, Blakemore W, Chessari G, Congreve M, Howard S, Jhoti H, Murray CW, Seavers LCA, van Montfort RLM (2006) Application of fragment screening and fragment linking to the discovery of novel thrombin inhibitors. J Med Chem 49:1346–1355

    Article  CAS  PubMed  Google Scholar 

  7. Bodoor K, Boyapati V, Gopu V, Boisdore M, Allam K, Miller J, Treleaven WD, Weldeghiorghis T, Aboul-ela F (2009) Design and implementation of an ribonucleic acid (RNA) directed fragment library. J Med Chem 52:3753–3761

    Article  CAS  PubMed  Google Scholar 

  8. Wang Y-S, Strickland C, Voigt JH, Kennedy ME, Beyer BM, Senior MM, Smith EM, Nechuta TL, Madison VS, Czarniecki M, McKittrick BA, Stamford AW, Parker EM, Hunter JC, Greenlee WJ, Wyss DF (2010) Application of fragment-based NMR screening, X-ray crystallography, structure-based design, and focused chemical library design to identify novel microM leads for the development of nM BACE-1 (beta-site APP cleaving enzyme 1) inhibitors. J Med Chem 53:942–950

    Article  CAS  PubMed  Google Scholar 

  9. Congreve M, Carr R, Murray C, Jhoti H (2003) A “rule of three” for fragment-based lead discovery? Drug Discov Today 8:876–877

    Article  PubMed  Google Scholar 

  10. Congreve M, Chessari G, Tisi D, Woodhead AJ (2008) Recent developments in fragment-based drug discovery. J Med Chem 51:3661–3680

    Article  CAS  PubMed  Google Scholar 

  11. Köster H, Craan T, Brass S, Herhaus C, Zentgraf M, Neumann L, Heine A, Klebe G (2011) A small nonrule of 3 compatible fragment library provides high hit rate of endothiapepsin crystal structures with various fragment chemotypes. J Med Chem 54:7784–7796

    Article  PubMed  Google Scholar 

  12. Zartler T (2013) What’s the fire behind the smoke? http://practicalfragments.blogspot.com/2013/04/whats-fire-behind-smoke.html. Accessed 9 Apr 2014

  13. Jhoti H, Williams G, Rees DC, Murray CW (2013) The “rule of three” for fragment-based drug discovery: where are we now? Nat Rev Drug Discov 12:644–645

    Article  CAS  PubMed  Google Scholar 

  14. Verlinde CLMJ, Fan E, Shibata S, Zhang Z, Sun Z, Deng W, Ross J, Kim J, Xiao L, Arakaki T, Bosch J, Caruthers JM, Larson ET, LeTrong I, Napuli A, Kelley A, Mueller N, Zucker F, Van Voorhis WC, Buckner FS, Merritt EA, Hol WGJ (2009) Fragment-based cocktail crystallography by the Medical Structural Genomics of Pathogenic Protozoa Consortium. Curr Top Med Chem 9:1678–1687

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Nienaber VL, Richardson PL, Klighofer V, Bouska JJ, Giranda VL, Greer J (2000) Discovering novel ligands for macromolecules using X-ray crystallographic screening. Nat Biotechnol 18:1105–1108

    Article  CAS  PubMed  Google Scholar 

  16. Hartshorn M, Murray C, Cleasby A, Frederickson M, Tickle I, Jhoti H (2005) Fragment-based lead discovery using X-ray crystallography. J Med Chem 48:403–413

    Article  CAS  PubMed  Google Scholar 

  17. Spurlino JC (2011) Fragment screening purely with protein crystallography. Methods Enzymol 493:321–356

    Article  CAS  PubMed  Google Scholar 

  18. Perryman AL, Zhang Q, Soutter HH, Rosenfeld R, McRee DE, Olson AJ, Elder JE, David Stout C (2010) Fragment-based screen against HIV protease. Chem Biol Drug Des 75:257–268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Davies TG, Tickle IJ (2011) Fragment screening using X-Ray crystallography. Top Curr Chem 317:33–59

    Article  Google Scholar 

  20. Bauman JD, Patel D, Dharia C, Fromer M, Ahmed S, Frenkel Y, Eck JT, Ho W, Das K, Shatkin A, Arnold E (2013) Detecting allosteric sites of HIV-1 reverse transcriptase by X-ray crystallographic fragment screening. J Med Chem 56:2738–2746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Bauman JD, Patel D, Baker SF, Vijayan RSK, Xiang A, Parhi AK, Martínez-Sobrido L, Lavoie EJ, Das K, Arnold E (2013) Crystallographic fragment screening and structure-based optimization yields a new class of influenza endonuclease inhibitors. ACS Chem Biol 8:2501–2508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Bauman JD, Das K, Ho WC, Baweja M, Himmel DM, Arthur D, Clark J, Oren DA, Boyer PL, Hughes SH, Shatkin AJ, Arnold E (2008) Crystal engineering of HIV-1 reverse transcriptase for structure-based drug design. Nucleic Acids Res 36:5083–5092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Flocco MM, Mowbray SL (1994) Planar stacking interactions of arginine and aromatic side-chains in proteins. J Mol Biol 235:709–717

    Article  CAS  PubMed  Google Scholar 

  24. Kuroda DG, Bauman JD, Challa JR, Patel D, Troxler T, Das K, Arnold E, Hochstrasser RM (2013) Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase. Nat Chem 5:174–181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Shin G, Yost SA, Miller MT, Elrod EJ, Grakoui A, Marcotrigiano J (2012) Structural and functional insights into alphavirus polyprotein processing and pathogenesis. Proc Natl Acad Sci U S A 109:16534–16539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Mueller-Dieckmann C, Kauffmann B, Weiss MS (2011) Trimethylamine N-oxide as a versatile cryoprotective agent in macromolecular crystallography. J Appl Crystallogr 44:433–436

    Article  CAS  Google Scholar 

  27. Blaney J, Nienaber V, Burley SK (2006) Fragment-based lead discovery and optimisation using X- ray crystallography, computational chemistry, and high-throughput organic synthesis. In: Jahnke W, Erlanson DA (eds) Fragment-based approaches in drug discovery. Methods and principles in medicinal chemistry. Wiley–VCH, Weinheim, pp 215–248

    Chapter  Google Scholar 

  28. Dalvit C, Flocco M, Veronesi M, Stockman BJ (2002) Fluorine-NMR competition binding experiments for high-throughput screening of large compound mixtures. Comb Chem High Throughput Screen 5:605–611

    Article  CAS  PubMed  Google Scholar 

  29. Tiefenbrunn T, Forli S, Happer M, Gonzalez A, Tsai Y, Soltis M, Elder JH, Olson AJ, Stout CD (2014) Crystallographic fragment – based drug discovery: use of a brominated fragment library targeting HIV protease. Chem Biol Drug Des 83:141–148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Yuan P, Bartlam M, Lou Z, Chen S, Zhou J, He X, Lv Z, Ge R, Li X, Deng T, Fodor E, Rao Z, Liu Y (2009) Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site. Nature 458:909–913

    Article  CAS  PubMed  Google Scholar 

  31. Dias A, Bouvier D, Crépin T, McCarthy AA, Hart DJ, Baudin F, Cusack S, Ruigrok RWH (2009) The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 458:914–918

    Article  CAS  PubMed  Google Scholar 

  32. Dubois RM, Slavish PJ, Baughman BM, Yun M-K, Bao J, Webby RJ, Webb TR, White SW (2012) Structural and biochemical basis for development of influenza virus inhibitors targeting the PA endonuclease. PLoS Pathog 8:e1002830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Doan L, Handa B, Roberts NA, Klumpp K (1999) Metal ion catalysis of RNA cleavage by the influenza virus endonuclease. Biochemistry 38:5612–5619

    Article  CAS  PubMed  Google Scholar 

  34. Crépin T, Dias A, Palencia A, Swale C, Cusack S, Ruigrok RWH (2010) Mutational and metal binding analysis of the endonuclease domain of the influenza virus polymerase PA subunit. J Virol 84:9096–9104

    Article  PubMed Central  PubMed  Google Scholar 

  35. Syson KK, Tomlinson CC, Chapados BRB, Sayers JRJ, Tainer JAJ, Williams NHN, Grasby JAJ (2008) Three metal ions participate in the reaction catalyzed by T5 flap endonuclease. J Biol Chem 283:28741–28746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Ivanov I, Tainer JA, McCammon JA (2007) Unraveling the three-metal-ion catalytic mechanism of the DNA repair enzyme endonuclease IV. Proc Natl Acad Sci 104:1465–1470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Sam MDM, Perona JJJ (1999) Catalytic roles of divalent metal ions in phosphoryl transfer by EcoRV endonuclease. Biochemistry 38:6576–6586

    Article  CAS  PubMed  Google Scholar 

  38. Kovall RA, Matthews BW (1999) Type II restriction endonucleases: structural, functional and evolutionary relationships. Curr Opin Chem Biol 3:578–583

    Article  CAS  PubMed  Google Scholar 

  39. Horton NC, Newberry KJ, Perona JJ (1998) Metal ion-mediated substrate-assisted catalysis in type II restriction endonucleases. Proc Natl Acad Sci U S A 95:13489–13494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Horton NC, Perona JJ (2004) DNA cleavage by EcoRV endonuclease: two metal ions in three metal ion binding sites. Biochemistry 43:6841–6857

    Article  CAS  PubMed  Google Scholar 

  41. Parhi AK, Xiang A, Bauman JD, Patel D, Vijayan RSK, Das K, Arnold E, Lavoie EJ (2013) Phenyl substituted 3-hydroxypyridin-2(1H)-ones: inhibitors of influenza A endonuclease. Bioorg Med Chem 21:6435–6446

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

EA is grateful to the National Institutes of Health for support from grants R37 AI027690 (MERIT Award) and P50 GM103368. We also thank our collaborators in RT studies, both past and present.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joseph D. Bauman or Eddy Arnold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Bauman, J.D., Patel, D., Arnold, E. (2015). Adventures in Small Molecule Fragment Screening by X-ray Crystallography. In: Scapin, G., Patel, D., Arnold, E. (eds) Multifaceted Roles of Crystallography in Modern Drug Discovery. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9719-1_15

Download citation

Publish with us

Policies and ethics