Skip to main content

Assessing Tumor Angiogenesis in Histological Samples

  • Chapter
Handbook of Vascular Biology Techniques
  • 1547 Accesses

Abstract

Angiogenesis is a hallmark of cancer [1] and occurs in most human tumors. It has been shown that angiogenic tumors are more likely to develop metastasis and exhibit resistance to standard cancer therapies [2], making tumor angiogenesis a prognostic and sometimes predictive biomarker [3, 4]. Although new imaging technologies, such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) or positron emission tomography-computed tomography (PET-CT) scans, are clinically available to visualize tumor angiogenesis in vivo [5, 6], histological assessment of tumor angiogenesis remains a technique of interest, as it can provide information on the capillary level of newly developed microvessels in different parts of the tumor [7]. Via histological examination, the relationship between tumor microvessels and other clinicopathological tumor characteristics can be evaluated as well [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    CD31 and CD34 are the most commonly used endothelial markers due to their consistent and reliable results in paraffin-embedded tissues; however, depending on the objective of the study, other markers, such as vascular endothelial growth factor receptors (VEGFRs) or CD105, can be used.

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  2. Abdollahi A, Folkman J (2010) Evading tumor evasion: current concepts and perspectives of anti-angiogenic cancer therapy. Drug Resist Updat 13:16–28

    Article  CAS  PubMed  Google Scholar 

  3. Gasparini G, Toi M (1998) Prognostic significance of p53, angiogenesis, and other conventional features in operable breast cancer: subanalysis in node-positive and node-negative patients. Int J Oncol 12:1117–1125

    CAS  PubMed  Google Scholar 

  4. Toi M, Bando H et al (2000) The predictive value of angiogenesis for adjuvant therapy in breast cancer. Breast Cancer 7:311–314

    Article  CAS  PubMed  Google Scholar 

  5. Barrett T, Brechbiel M et al (2007) MRI of tumor angiogenesis. J Magn Reson Imaging 26:235–249

    Article  PubMed  Google Scholar 

  6. Iagaru A, Gambhir SS (2013) Imaging tumor angiogenesis: the road to clinical utility. AJR Am J Roentgenol 201:W183–191

    Article  PubMed  Google Scholar 

  7. Fox SB, Harris AL (2004) Histological quantitation of tumour angiogenesis. APMIS 112:413–430

    Article  PubMed  Google Scholar 

  8. Bossi P, Viale G et al (1995) Angiogenesis in colorectal tumors: microvessel quantitation in adenomas and carcinomas with clinicopathological correlations. Cancer Res 55:5049–5053

    CAS  PubMed  Google Scholar 

  9. Mlynek ML, van Beunigen D et al (1985) Measurement of the grade of vascularisation in histological tumour tissue sections. Br J Cancer 52:945–948

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Weidner N, Semple JP et al (1991) Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N Engl J Med 324:1–8

    Article  CAS  PubMed  Google Scholar 

  11. Mayers MM, Seshadri R et al (1998) Tumor microvascularity has no independent prognostic significance for breast cancer. Pathology 30:105–110

    Article  CAS  PubMed  Google Scholar 

  12. Horak ER, Leek R et al (1992) Angiogenesis, assessed by platelet/endothelial cell adhesion molecule antibodies, as indicator of node metastases and survival in breast cancer. Lancet 340:1120–1124

    Article  CAS  PubMed  Google Scholar 

  13. Chandrashud LM, Pendleton N et al (1997) Relationship between vascularity, age and survival in non-small cell lung cancer. Br J Cancer 76:1367–1375

    Article  Google Scholar 

  14. Amit L, Ben-Aharon I et al (2013) The impact of Bevacizumab (Avastin) on survival in metastatic solid tumors–a meta-analysis and systematic review. PLoS One 8:e51780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Fitzgibbons PL, Page DL et al (2000) Prognostic factors in breast cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med 124:966–978

    CAS  PubMed  Google Scholar 

  16. Compton CC, Fielding LP et al (2000) Prognostic factors in colorectal cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med 124:979–994

    CAS  PubMed  Google Scholar 

  17. Bostwick DG, Grignon DJ et al (2000) Prognostic factors in prostate cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med 124:995–1000

    CAS  PubMed  Google Scholar 

  18. Vermeulen PB, Gasparini G et al (2002) Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours. Eur J Cancer 38:1564–1579

    Article  CAS  PubMed  Google Scholar 

  19. Fakhrejahani E, Toi M (2012) Tumor angiogenesis: pericytes and maturation are not to be ignored. J Oncol 2012:261750

    Article  PubMed Central  PubMed  Google Scholar 

  20. Goldstein M, Watkins S (2008) Immunohistochemistry. Curr Protoc Mol Biol 81:14.6.1–14.6.23

    Google Scholar 

  21. Stessels F, Van den Eynden G et al (2004) Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. Br J Cancer 90:1429–1436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Griffioen AW, Mans LA et al (2012) Rapid angiogenesis onset after discontinuation of sunitinib treatment of renal cell carcinoma patients. Clin Cancer Res 18:3961–3971

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol 31:2205–2218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Adams A, van Brussel AS et al (2013) The potential of hypoxia markers as target for breast molecular imaging – a systematic review and meta-analysis of human marker expression. BMC Cancer 13:538

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Toi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fakhrejahani, E., Toi, M. (2015). Assessing Tumor Angiogenesis in Histological Samples. In: Slevin, M., McDowell, G. (eds) Handbook of Vascular Biology Techniques. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9716-0_20

Download citation

Publish with us

Policies and ethics