Skip to main content

Structural, Optical and Electrical Properties of ZnO Thin Films Doped with Al, V and Nb, Deposited by r.f. Magnetron Sputtering

  • Conference paper
  • First Online:
Nanoscience Advances in CBRN Agents Detection, Information and Energy Security

Abstract

Structural, optical and electrical properties of ZnO thin films doped with different elements (Al, Al + H, V, Nb), deposited by r.f. magnetron sputtering on glass substrates at different temperature Ts between 50 and 500 °C are studied. XRD spectra demonstrate a preferential (002) crystallographic orientation with the c-axis perpendicular to the substrate surface and grains sizes of about 19–29 nm. The value of band gap energy Eg is in the range of 3.49–3.58 eV for ZnO:Al, 3.51–3.58 eV for ZnO:Al:H, 3.44–3.47 eV for ZnO:V, and 3.28–3.44 eV for ZnO:Nb. The deposited ZnO films doped with Al, H, V and Nb have low resistivities of 1.6–2.2⋅10−3 Ωcm. The transparency of the studied films is about 85–90 % in the visible region. The obtained transparent conductive ZnO thin films can be applied in solar cells and other optoelectronic devices as TCO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li Y, Gong J, McCune M, He G, Deng Y (2010) Synth Met 160:499

    Article  Google Scholar 

  2. Seshadri R (2005) Curr Opinion Solid State Mater Sci 9:1

    Article  ADS  Google Scholar 

  3. Minami T (2005) Semicond Sci Technol 20:S35

    Article  ADS  Google Scholar 

  4. Koshizaki N, Oyama T (2000) Sensors Actuators B 66:119

    Article  Google Scholar 

  5. Saeki H, Tabata H, Kawai T (2001) Solid State Commun 120:439

    Article  ADS  Google Scholar 

  6. Fukumura T, Jin Z, Ohtomo A, Koinuma H, Kawasaki M (2000) Appl Phys Lett 75:3366

    Article  ADS  Google Scholar 

  7. Yin Z, Chen N, Yang F, Song S, Chai C, Zhong J, Qian H, Ibrahim K (2005) Solid State Commun 135:430

    Article  ADS  Google Scholar 

  8. Dimova-Malinovska D, Angelov O, Nichev H, Kamenova M, Pivin JC (2007) J Optoelectron Adv Mater 9:2512

    Google Scholar 

  9. Pankove J (1971) Optical processes in semiconductors. Prentice-Hall, Inc., Englewood Cliffs

    Google Scholar 

  10. Dragoman D, Dragoman M (2002) Optical characterization of solids. Springer, Heidelberg

    Book  Google Scholar 

  11. Girtan M, Folsher G (2003) Surf Coat Technol 172:242

    Article  Google Scholar 

  12. Swanepoel R (1983) J Phys E Sci Instrum 16:1214

    Article  ADS  Google Scholar 

  13. Van der Walle GC (2000) Phys Rev Lett 85:1012

    Article  ADS  Google Scholar 

  14. Mollwo E (1954) Z Phys 138:478

    Article  ADS  Google Scholar 

  15. Seraphin BO (1979) Solar energy conversion. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  16. Roth A, Williams D (1981) J Appl Phys 52:6685

    Article  ADS  Google Scholar 

  17. Lovchinov K, Nichev H, Angelov O, Sendova-Vassileva M, Dimova-Malinovska D, Mikli V (2010) J Phys Conf Ser 253:012030

    Article  ADS  Google Scholar 

  18. Dimova-Malinovska D, Nichev H, Angelov O (2009) Phys Status Solidi 5:3353

    Article  Google Scholar 

  19. Burstein E (1954) Phys Rev 93:632

    Article  ADS  Google Scholar 

  20. Mott N, Davis E (1979) Electronic processes in noncrystalline materials. Oxford, Clarendon, p 289

    Google Scholar 

  21. Saito N (1985) J Appl Phys 58:3504

    Article  ADS  Google Scholar 

  22. Miyata T, Suzuki S, Ishii M, Minami T (2002) Thin Solid Films 411:76

    Article  ADS  Google Scholar 

  23. Hickenell FS (1975) J Vac Sci Technol 12:879

    Article  ADS  Google Scholar 

  24. Dimova-Malinovska D, Nichev H, Angelov O, Grigorov V, Kamenova M (2007) Superlattice Microst 42:123

    Article  ADS  Google Scholar 

  25. Tzolov M, Tzenov N, Dimova-Malinovska D, Kalitzova M, Pizzuto C, Vitali G, Zollo G, Ivanov I (2000) Thin Solid Films 379:28

    Article  ADS  Google Scholar 

  26. Ke X, Zou C, Li M, Liu C, Guo L, Fu D (2010) Jpn J Appl Phys 49:033001

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Lovchinov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Lovchinov, K., Petrov, M., Angelov, O., Nichev, H., Mikli, V., Dimova-Malinovska, D. (2015). Structural, Optical and Electrical Properties of ZnO Thin Films Doped with Al, V and Nb, Deposited by r.f. Magnetron Sputtering. In: Petkov, P., Tsiulyanu, D., Kulisch, W., Popov, C. (eds) Nanoscience Advances in CBRN Agents Detection, Information and Energy Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9697-2_29

Download citation

Publish with us

Policies and ethics