Skip to main content

Biological Safety of Hydrogen

  • Chapter
  • First Online:
Hydrogen Molecular Biology and Medicine

Abstract

Based on three main reasons, the biosafety of hydrogen is very high: The first is evidence from medical research on hydrogen diving, the second is that hydrogen is an endogenous gas, and the third is direct research on the biosafety of hydrogen. Research on hydrogen diving, combined with human trials on hydrogen diving, proved that hydrogen is very safe for humans to breathe. Since a certain level of hydrogen is produced by Escherichia coli in the large intestine of normal humans, hydrogen can be considered an endogenous gas. So far, no clinical evidence has been found that hydrogen can be harmful for the human body. Published data from the EU and the US government on the biosafety of hydrogen showed that hydrogen has no acute or chronic toxicity on the human body under normal pressure. Despite this, any substance that can produce biological effects on the human body has the potential of destroying homeostasis, which may be harmful. Although the biosafety of hydrogen is very high, we still cannot assure that hydrogen has no side effects on the human body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acott C. A brief history of diving and decompression illness. SPUMS J. 1999;29:98–109.

    Google Scholar 

  2. Case E, Haldane JBS. Human physiology under high pressure: I. effects of nitrogen, carbon dioxide, and cold. J Hyg. 1941;41:225–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Lazarev N, Lyublina E, Madorskaya R. Biological actions of gases under pressure. Leningrad: VMMA; 1941.

    Google Scholar 

  4. Zetterstrom A. Deep-sea diving with synthetic gas mixtures. Mil Surg. 1948;103:104–6.

    CAS  PubMed  Google Scholar 

  5. Bjurstedt H, Severin G. The prevention of decompression sickness and nitrogen narcosis by the use of hydrogen as a substitute for nitrogen, the Arne Zetterstrom method for deep-sea diving. Mil Surg. 1948;103:107–16.

    CAS  PubMed  Google Scholar 

  6. Hengyi Tao, Xuejun Sun et al. Diving medicine. Shanghai: Shanghai Science and Technology Press; 2010.

    Google Scholar 

  7. Edel P. Sea-Space Research Co., Inc. Harvey, La 70058 since hydrogen is the lightest of all gases, we might expect it to offer the lowest resistance in a laminar flow system which should promote more rapid diffusion of O2 and CO2 within the gas exchange units of the, hydrogen as a diving gas: Proceedings of the Thirty-third Undersea and Hyperbaric Medical Society Workshop. Undersea and Hyperbaric Medical Society; 1987. p. 275.

    Google Scholar 

  8. Bennett P, Towse E. The high pressure nervous syndrome during a simulated oxygen-helium dive to 1500 ft. Electroencephalogr Clin Neurophysiol. 1971;31:383–93.

    Article  CAS  PubMed  Google Scholar 

  9. Gardette B, Gortan C. Mice and monkeys deep dives in heliox, hydrox and hydreliox gas mixtures-synthesis of COMEX “Hydra” programme, Basic and applied high pressure biology. Rochester: University Press of Rochester; 1994. p. 173–84.

    Google Scholar 

  10. Abraini J, Gardette-Chauffour M, Martinez E, Rostain J, Lemaire C. Psychophysiological reactions in humans during an open sea dive to 500 m with a hydrogen-helium-oxygen mixture. J Appl Physiol. 1994;76:1113–3.

    Google Scholar 

  11. Gardette B, Gortan C, Delauze HG. Helium in-hydrogen out. A new diving technique. Proceedings of the 23rd Annual Scientific Meeting of the European. Bled: Underwater and Baromedical Society; 1997.

    Google Scholar 

  12. Gortan C, Delauze H. Hydra V hydrogen experimental dive to 450 meters, offshore technology conference. Offshore technology conference, 1986.

    Google Scholar 

  13. Imbert J, Gortan C, Fructus X, Ciesielski T, Gardette B. Hydra 8: pre-commercial hydrogen diving project, submersible technology: adapting to change. Advances in Underwater Technology, Ocean Science and Offshore Engineering. 1988;14:107–16.

    Google Scholar 

  14. Joulia F, Barthèlemy P, Guerrero F, Jammes YT. Wave changes in humans and dogs during experimental dives. J Appl Physiol. 1992;73:1708–12.

    CAS  PubMed  Google Scholar 

  15. Gardette B, Massimelli J, Comet M, Gortan C, Delauze H, Comex S, France M. Hydra 10: a 701 msw onshore record dive using “Hydreliox.”, XIXth annual meeting of European undersea biomedical society on diving and hyperbaric medicine. Trondheim: SINTEF UNIMED; 1993.

    Google Scholar 

  16. Imbert C, Colton J, Long W, Grossman Y, Moore H. A system for saturating in vitro preparations with high pressure O2, He, H2, and mixtures. Undersea Biomed Res. 1992;19:49–53.

    CAS  PubMed  Google Scholar 

  17. Kayar SR, Miller TL, Wolin MJ, Aukhert EO, Axley MJ, Kiesow LA. Decompression sickness risk in rats by microbial removal of dissolved gas. Am J Physiol-Regul Integr Comp Physiol. 1998;275:R677–82.

    CAS  Google Scholar 

  18. Kayar S, Fahlman A, Lin W, Whitman W. Increasing activity of H2-metabolizing microbes lowers decompression sickness risk in pigs during H2 dives. J Appl Physiol. 2001;91:2713–19.

    CAS  PubMed  Google Scholar 

  19. Brauer RW, Way RO. Relative narcotic potencies of hydrogen, helium, nitrogen, and their mixtures. J Appl Physiol. 1970;29:23–31.

    Google Scholar 

  20. Brauer R, Way R, Perry T. Narcotic effects of helium and hydrogen and hyperexcitability phenomenon at simulated depths of 1500 to 4000 ft of sea water, toxicity of anesthetics. Baltimore: Williams and Wilkins; 1968. p. 241–55.

    Google Scholar 

  21. George M, Craig C, William R, Kevin L, Bernard R. Performance effects with repeated exposure to the diving environment. J Appl Psychol. 1981;66:502.

    Article  Google Scholar 

  22. Rostain JC, Balon N. Recent neurochemical basis of inert gas narcosis and pressure effects. Undersea Hyperb Med. 2006;33(3):197–204.

    Google Scholar 

  23. Kayar SR, Parker EC, Harabin AL. Metabolism and thermoregulation in guinea pigs in hyperbaric hydrogen: effects of pressure. J Thermal Biol. 1997;22:31–41.

    Article  CAS  Google Scholar 

  24. Dougherty J Jr. Use of H2 as an inert gas during diving: pulmonary function during H2-O2 breathing at 7.06 ATA. Aviat Space Environ Med. 1976;47:618–26.

    Google Scholar 

  25. Dougherty JH Jr, Schaefer KE. Pulmonary functions during saturation-excursion dives breathing air. Aerosp Med. 1968 39(3):289–92.

    Google Scholar 

  26. Lenoir P, Jammes Y, Giry P, Rostain J, Burnet H, Tomei C, Roussos C. Electromyographic study of respiratory muscles during human diving at 46 ATA. Undersea Biomed Res. 1990;17:121–37.

    CAS  PubMed  Google Scholar 

  27. Ornhagen H, Warkander D, Dahlback G. [abstract] Respiratory mechanics during hydrox breathing at 13 ATM, (1984).

    Google Scholar 

  28. Gennser M, Ornhagen H. Effects of hydrostatic pressure, H2, N2, and He, on beating frequency of rat atria. Undersea Biomed Res. 1989;16:153–64.

    CAS  PubMed  Google Scholar 

  29. Ornhagen H, Adolfson J, Gennser M, Gustavson M, Muren A. [abstract] Performance during hydrogen breathing at 13 atm, (1984).

    Google Scholar 

  30. Levitt MD. Production and excretion of hydrogen gas in man. N Engl J Med. 1969;281:122–7.

    Article  CAS  PubMed  Google Scholar 

  31. Askevold F. Investigations on the influence of diet on the quantity and composition of intestinal gas in humans. Scand J Clin Lab Invest. 1956;8:87–94.

    Article  CAS  PubMed  Google Scholar 

  32. Steggerda F. Gastrointestinal gas following food consumption. Ann N Y Acad Sci. 1968;150:57–66.

    Article  CAS  PubMed  Google Scholar 

  33. Levitt MD. Volume and composition of human intestinal gas determined by means of an intestinal washout technic. N Engl J Med. 1971;284:1394–98.

    Article  CAS  PubMed  Google Scholar 

  34. Carbonero F, Benefiel AC, Gaskins HR. Contributions of the microbial hydrogen economy to colonic homeostasis. Nat Rev Gastroenterol Hepatol. 2012;9:504–18.

    Article  CAS  PubMed  Google Scholar 

  35. Strocchi A, Corazza G, Ellis CJ, Gasbarrini G, Levitt MD. Detection of malabsorption of low doses of carbohydrate: accuracy of various breath H2 criteria. Gastroenterology. 1993;105(5):1404–10.

    Google Scholar 

  36. Hammer HF. Colonic hydrogen absorption: quantification of its effect on hydrogen accumulation caused by bacterial fermentation of carbohydrates. Gut. 1993;34:818–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Gall L. The role of intestinal flora in gas formation. Ann N Y Acad Sci. 1968;150:27–30.

    Google Scholar 

  38. Suzuki Y, Sano M, Hayashida K, Ohsawa I, Ohta S, Fukuda K. Are the effects of α-glucosidase inhibitors on cardiovascular events related to elevated levels of hydrogen gas in the gastrointestinal tract? FEBS Lett. 2009;583:2157–59.

    Article  CAS  PubMed  Google Scholar 

  39. Nishimura N, Tanabe H, Sasaki Y, Makita Y, Ohata M, Yokoyama S, Asano M, Yamamoto T, Kiriyama S. Pectin and high-amylose maize starch increase caecal hydrogen production and relieve hepatic ischaemia—reperfusion injury in rats. Br J Nutr. 2012;107:485–92.

    Article  CAS  PubMed  Google Scholar 

  40. Ito M, Hirayama M, Yamai K, Goto S, Ito M, Ichihara M, Ohno K. Drinking hydrogen water and intermittent hydrogen gas exposure, but not lactulose or continuous hydrogen gas exposure, prevent 6-hydorxydopamine-induced Parkinson’s disease in rats. Med Gas Res. 2012;2:15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Kajiya M, Sato K, Silva MJ, Ouhara K, Do PM, Shanmugam K, Kawai T. Hydrogen from intestinal bacteria is protective for Concanavalin A-induced hepatitis. Biochem Biophys Res Commun. 2009;386:316–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsunori Nakao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sun, Q., Han, W., Nakao, A. (2015). Biological Safety of Hydrogen. In: Sun, X., Ohta, S., Nakao, A. (eds) Hydrogen Molecular Biology and Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9691-0_3

Download citation

Publish with us

Policies and ethics