Skip to main content

Ammonites on the Brink of Extinction: Diversity, Abundance, and Ecology of the Order Ammonoidea at the Cretaceous/Paleogene (K/Pg) Boundary

  • Chapter
  • First Online:
Ammonoid Paleobiology: From macroevolution to paleogeography

Part of the book series: Topics in Geobiology ((TGBI,volume 44))

Abstract

We examined the stratigraphic distribution of ammonites at a total of 29 sites around the world in the last 0.5 myr of the Maastrichtian. We demarcated this interval using biostratigraphy, magnetostratigraphy, cyclostratigraphy, and data on fossil occurrences in relation to the K/Pg boundary in sections without any facies change between the highest ammonites and the K/Pg boundary. The ammonites at this time represent all four Mesozoic suborders comprising six superfamilies, 31 (sub)genera, and 57 species. The distribution of ammonites is dependent on the environmental setting. Recent data suggest that ammonites persisted to the boundary and some species may have survived for several tens of thousands of years into the Paleogene. The best explanation for ammonite extinction is a brief episode of ocean acidification immediately following the Chixculub impact, which caused the decimation of the calcareous plankton including the planktic post-hatching stages of ammonites. The geographic distribution of ammonites may also have played a role in the events with more broadly distributed genera being more resistant to extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Gawad GI (1986) Maastrichtian non-cephalopod mollusks (Scaphopoda, Gastropoda and Bivalvia) of the Middle Vistula Valley, Central Poland. Acta Geol Pol 36:69–224

    Google Scholar 

  • Alegret L, Thomas E, Lohmann KC (2012) End-Cretaceous marine mass extinction not caused by productivity collapse. Proc Natl Acad Sci U S A 109:728–732

    Article  CAS  Google Scholar 

  • Alekseev AS, Nasarovm MA, Barsukova LD, Kolesov GM, Nuzhegorodova IV, Amanniâzov KN (1988) The Cretaceous-Paleogene boundary in southern Turkmenia and its geochemical characteristics. Bûelleten Moskovskgo Obŝestva Prirody, Otdel Geologiĉeskij 63:55–69 (in Russian)

    Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–1108

    Article  CAS  Google Scholar 

  • Arkhipkin A, Laptikhivsky VV (2012) Impact of ocean acidification on plankton larvae as a cause of mass extinctions in ammonites and belemnites. N Jb Geol Paläont Abh 266:39–50

    Article  Google Scholar 

  • Atabekian AA, Akopian VT (1969) Late Cretaceous ammonites of the Armenian SSR (Pachydiscidae). Izvestiya AN Armyanskoj SSR, Nauki o Zemle 6:3–20 (in Russian)

    Google Scholar 

  • Batenburg SJ, Sprovieri M, Gale AS, Hilgen FJ, Hüsing S, Laskar J, Liebrand D, Lirer F, Orue-Etxebarria X, Pelosi N, Smit J (2012) Cyclostratigraphy and astronomical tuning of the Late Maastrichtian at Zumaia (Basque country, Northern Spain). Earth Planet Sci Lett 359/360:264–278

    Article  Google Scholar 

  • Berggren WA, Ouda K (2013) Early Paleogene geohistory of Egypt: the Dababiya Quarry corehole. Stratigraphy 9(2012):183–188

    Google Scholar 

  • Berggren WA, Alegret L, Aubry M-P, Cramer BS, Dupuis C, Goolaerts S, Kent DV, King C, O’Knox RW, Obaidalla Nh, Ortiz S, Ouda AK, Sabour AA, Salem R, Senosy MM, Soliman MF, Soliman A (2012) The Dababiya corehole: upper Nile Valley, Egypt: preliminary results. Austrian J Earth Sci 105:161–168

    Google Scholar 

  • Binkhorst van den Binkhorst JT (1861–1862) Monographie des gastéropodes et des céphalopodes de la Craie supérieure du Limbourg, suivie d’une description de quelques espèces de crustacés du même dépôt crétacé, avec dix-huit planches dessinées et lithographiées par C. Hohe, de Bonn. A. Muquardt/Muller Frères, Bruxelles/Maastricht

    Google Scholar 

  • Birkelund T (1965) Ammonites from the Upper Cretaceous of West Greenland. Meddr om Grønland, vol 179., pp 1–192

    Google Scholar 

  • Birkelund T (1979) The last Maastrichtian ammonites. In: Birkelund T, Bromley RG (eds) Cretaceous-Tertiary boundary events symposium 1, The Maastrichtian and Danian of Denmark. University of Copenhagen, Copenhagen

    Google Scholar 

  • Birkelund T (1993) Ammonites from the Maastrichtian White Chalk of Denmark. Bull Geol Soc Denmark 40:33–81

    Article  Google Scholar 

  • Blakey R (2011) Mollewide plate tectonic maps. http://cpgeosystems.com/mollglobe/html. Accessed April 2014

  • Boas C, Garb MP, Rovelli R, Larina E, Myers CE, Naujokaityte J, Landman NH, Phillips GE (2013a) New K/Pg localities along the eastern Gulf Coastal Plain: More evidence of impact and tsunamis: GSA Abst with Prog 45:133

    Google Scholar 

  • Boas C, Garb MP, Landman NH, Rovelli R, Larina E (2013b) The significance of a fossiliferous spherule bed at the K/Pg boundary in northern Mississippi. GSA Abst with Prog 45:61

    Google Scholar 

  • Böhm J (1898) Ueber Ammonites pedernalis v. Buch, Zeitschr Deut Geol Ges. pp 183–201 (50)

    Google Scholar 

  • Brunnschweiler RO (1966) Upper Cretaceous ammonites from the Carnarvon Basin of Western Australia. 1. The heteromorph Lytoceratina, Bulletin Bureau of Mineral Resources Geology and Geophysics no 58. Bureau of Mineral Resources Geology and Geophysics, Capital of Australia, 58:1–158

    Google Scholar 

  • Burnett JA (= Lees JA) (1998) Upper Cretaceous. In: Bown PR (ed) Calcareous nannofossil biostratigraphy. Chapman & Hall, Kluwer Academic, London

    Google Scholar 

  • Campbell CE, Oboh-Ikuenobe FE, Eifert TL (2008) Megatsunami deposit in Cretaceous-Paleogene boundary interval of southeastern Missouri. In: Evans KR, Horton JR Jr, King DT Jr, Morrow JR (eds) The sedimentary record of meteorite impacts. The Geological Society of America Special Paper 437, pp 189–198

    Google Scholar 

  • Cobban WA, Kennedy WJ (1995) Maastrichtian ammonites chiefly from the Prairie Bluff Chalk in Alabama and Mississippi. Paleontol Soc Mem 44:1–40

    Google Scholar 

  • Collignon M (1952) Ammonites néocrétacés du Menabe (Madagascar). II.–Les Pachydiscidae. Travaux du Bureau géologique de Madagascar 41:1–114

    Google Scholar 

  • Conrad TA (1857) Descriptions of Cretaceous and Tertiary fossils. In: Emory WH (ed) Report on the United States and Mexican boundary survey. US 34th Congress, 1st Session, Senate Ex Documents 108 and House Ex Document 135, 1(2)

    Google Scholar 

  • Conrad TA (1858) Observations on a group of Cretaceous fossil shells found in Tippah County, Mississippi, with descriptions of fifty-six new species. J Acad Natl Sci Phila 3:323–336

    Google Scholar 

  • Damholt T, Surlyk F (2012) Nomination of Stevns Klint for inclusion in the World Heritage List. Østsjaellands Museum, St. Heddinge

    Google Scholar 

  • Defrance MJL (1816) In: Dictionnaire des Sciences naturelles, dans lequel on traite méthodiquement des differents Etres de la Nature 3. Levrault, Paris

    Google Scholar 

  • Dinarès-Turell J, Pujalte V, Stoykova K, Elorza J (2013) Detailed correlation and astronomical forcing within the Upper Maastrichtian succession in the Basque Basin. Boletín Geológico Minero 124:253–282

    Google Scholar 

  • Elliot DH, Askin RA, Kyte FT, Zinsmeister WJ (1994) Iridium and dinocysts at the Cretaceous-Tertiary boundary on Seymour Island, Antarctica: implications for the K-T event. Geology 22:675–678

    Article  CAS  Google Scholar 

  • Engeser T, Keupp H (2002) Phylogeny of aptychi-possessing Neoammonoidea (Aptychophora nov., Cephalopoda). Lethaia 24:79–96

    Google Scholar 

  • Fatmi A, Kennedy WJ (1999) Maastrichtian ammonites from Balochistan, Pakistan. J Paleontol 73:641–662

    Article  Google Scholar 

  • Forbes E (1846) Report on the fossil Invertebrata from southern India, collected by Mr. Kaye and Mr. Cunliffe. Trans Geol Soc Lond 7:97–174

    Article  Google Scholar 

  • Gardin S, Galbrun B, Thibault N, Coccioni R, Premoli Silva I (2012) Bio-magnetostratigraphy for the upper Campanian-Maastrichtian from the Gubbio area, Italy: new results from the Contessa Highway and Bottaccione sections. Newsl Stratigr 45:75–103

    Article  Google Scholar 

  • Goolaerts S (2010a) Late Cretaceous ammonites from Tunisia: chronology and causes of their extinction and extrapolation to other areas. Aardkundige Mededelingen 21:1–220

    Google Scholar 

  • Goolaerts S (2010b) Late Cretaceous ammonites from Tunisia: chronology and causes of their extinction and extrapolation to other areas. PhD manuscript. Arenberg Doctoral School Katholieke Universiteit Leuven, Part 1: xii + 220 pp; Part 2: 317 pp (PhD thesis, in english)

    Google Scholar 

  • Goolaerts S, Dupuis C (2012) Ammonites from the Dababiya corehole: taxonomic notes and age assessment. In: Berggren WA, Ouda K, Aubry MP (eds) The Paleocene-Eocene succession of the upper Nile Valley and southwestern Desert (southern Egypt): Part 2: Biostratigraphy and paleoecology, A. Dababiya Core. Stratigraphy 9:261–266

    Google Scholar 

  • Goolaerts S, Kennedy WJ, Dupuis C, Steurbaut E (2004) Terminal Maastrichtian ammonites from the Cretaceous-Paleogene Global Stratotype Section and Point, El Kef, Tunisia. Cretaceous Research, vol 25. Academic press ltd elsevier science ltd, pp 313–328

    Google Scholar 

  • Gould SJ (1995) Dinosaur in a haystack: reflections in natural history. Harmony Books, New York

    Book  Google Scholar 

  • Gravesen P, Jakobsen SL (2013) Skrivekridtets Fossiler. Gyldendal Fakta, Kobenhavn

    Google Scholar 

  • Håkansson E, Hansen JM (1979) Guide to Maastrichtian and Danian boundary strata in Jylland. In: Birkelund T, Bromley RG (eds) Cretaceous-Tertiary Boundary Events Symposium I, Copenhagen

    Google Scholar 

  • Hansen JM (1977) Dinoflagellate stratigraphy and echinoid distribution in upper Maastrichtian and Danian deposits from Denmark. Bull Geol Soc Denmark 26:1–26

    Article  Google Scholar 

  • Hansen HJ (1990) Diachronous extinctions at the Cretaceous-Tertiary boundary: a scenario. In: Sharpton VL, Ward PD (eds) Global catastrophes in Earth history; an interdisciplinary conference on impacts, volcanism, and mass mortality. Geological Society of America Special Paper 247: 417–423

    Google Scholar 

  • Hansen T, Farrand RB, Montgomery HA, Billman HG, Blechschmidt G (1987) Sedimentology and extinction patterns across the Cretaceous-Tertiary boundary interval in east Texas. Cretac Res 8:229–252

    Article  Google Scholar 

  • Hansen HJ, Rasmussen KL, Gwozdz R, Hansen JM, Radwański A (1989) The Cretaceous/Tertiary boundary in Central Poland. Acta Geol Pol 39:1–12

    Google Scholar 

  • Hart MB, Searle SR, Feist SE, Leighton AD, Price GD, Smart CW, Twitchett RJ (2011) The ­distribution of benthic foraminifera across the Cretaceous-Paleogene boundary in Texas (Brazos River) and Denmark (Stevns Klint). In: Keller G, Adatte T (eds) End-Cretaceous mass extinction and the Chixculub impact in Texas: SEPM Special Publication no 100:179–196

    Google Scholar 

  • Hart MB, Yancey TE, Leighton AD, Miller B, Liu C, Smart CW, Twitchett RJ (2012) The Cretaceous-Paleogene Boundary on the Brazos River, Texas: new stratigraphic sections and revised interpretations. Gulf Coast Assoc Geol Sci J 1:69–80

    Google Scholar 

  • Hasegawa T, Pratt LM, Maeda H, Shigeta Y, Okamoto T, Kae T, Uemura K (2003) Upper Creta- ceous stable carbon isotope stratigraphy of terrestrial organic matter from Sakhalin, Russian Far East: a proxy for the isotopic composition of paleoatmospheric CO2. Palaeogeogr Palaeo- climatol Palaeoecol 189:97–115

    Google Scholar 

  • Hauer F von (1858) Über die Cephalopoden der Gosauschichten. Beitr Paläont Österr 1:7–14

    Google Scholar 

  • Henderson RA, McNamara KA (1985) Maastrichtian non-heteromorph ammonites from the Miria Formation. Palaeontology 28:35–88

    Google Scholar 

  • Hennebert M (2012) Hunting for the 405-kyr eccentricity cycle phase at the Cretaceous-Paleogene boundary in the Aïn Settara section (Kalaat Senan, central Tunisia). Carnets de Géol 2012/5:93–116

    Google Scholar 

  • Hennebert M, Dupuis C (2003) Proposition d’une échelle chronométrique autour de la limite Crétacé-Paléogène par cyclostratigraphie: coupe de l’Aïn Settara (Kalaat Senan, Tunisie centrale). Geobios 36:707–718

    Article  Google Scholar 

  • Herman Y, Bhattacharya SK, Perch-Nielsen K, Kopaevitch LF, Naidin DP, Frolov VT, Jeffers JD, Sarkar A (1988) Cretaceous-Tertiary boundary marine extinctions: the Russian platform record. Rev Española Paleont, n° Extraord “Palaeontology and Evolution: Extinction Events”: 31–40

    Google Scholar 

  • Hewitt RA (1996) Architecture and strength of the ammonoid shell. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York

    Google Scholar 

  • Hönisch B, Ridgwell A, Schmidt D, Thomas E, Gibbs SJ, Sluijs A, Zeebe R, Kump L, Martindale RC, Greene SE, Kiessling W, Ries J, Zachos JC, Royer DL, Barker S, Marchitto TM Jr, Moyer R, Pelejero C, Ziveri P, Foster GL, Williams B (2012) The geological record of ocean acidification. Science 335:1058–1063

    Article  Google Scholar 

  • Hupé P (1854) Malacología y conquiliología. In: Gay C (ed) Historia fisica y politica de Chile. Zoología 8:5–385

    Google Scholar 

  • Husson D, Galbrun B, Laskar J, Hinnov LA, Thibault N, Gardin S, Locklair RE (2011) Astronomical calibration of the Maastrichtian (Late Cretaceous). Earth Planet Sci Lett 305:328–340

    Article  CAS  Google Scholar 

  • Ifrim C, Stinnesbeck W (2010) Migration pathways of the late Campanian and Maastrichtian shallow facies ammonite Sphenodiscus in North America. Palaeogeogr Palaeoclimatol Palaeoecol 292:96–102

    Article  Google Scholar 

  • Ivanov M (1995) Upper Maastrichtian ammonites from the sections around the town of Bjala (eastern Bulgaria). Rev Bulg Geol Soc 56:57–73 (in Bulgarian)

    Google Scholar 

  • Ivanov MI, Stoykova KH (1994) Cretaceous/Tertiary boundary in the area of Bjala, eastern Bulgaria—biostratigraphical results. Geol Balc 24(6):3–22

    Google Scholar 

  • Jablonski D (2008) Extinction and the spatial dynamics of biodiversity. Proc Natl Acad of Sci U S A 105:11528–11535

    Article  CAS  Google Scholar 

  • Jagt JWM (1995) A Late Maastrichtian ammonite faunule in flint preservation from northeastern Belgium. Meded Rijks Geol Dienst 53:21–47

    Google Scholar 

  • Jagt JWM (1996) Late Maastrichtian and early Palaeocene index macrofossils in the Maastrichtian type area (SE Netherlands, NE Belgium). In: Brinkhuis H, Smit J (eds) The Geulhemmerberg Cretaceous/Tertiary boundary section (Maastrichtian type area, SE Netherlands). Geol Mijnbouw 75:153–162

    Google Scholar 

  • Jagt JWM (2002) Late Cretaceous ammonite faunas of the Maastrichtian type area. In: Summesberger H, Histon K, Dauer A (eds) Cephalopods—Present and past. Abh Geol B-A Wien 57:509–522

    Google Scholar 

  • Jagt JWM (2005) Stratigraphic ranges of mosasaurs in Belgium and the Netherlands (Late Cretaceous) and cephalopod-based correlations with North America. In: Schulp AS, Jagt JWM (eds) Proceedings of the First Mosasaur Meeting. Netherlands J Geosci 84:283–301

    Google Scholar 

  • Jagt JWM (2012) Ammonieten uit het Laat-Krijt en Vroeg-Paleogeen van Limburg. Staringia 13:154–183

    Google Scholar 

  • Jagt JWM, Jagt-Yazykova EA (2012) Stratigraphy of the type Maastrichtian—a synthesis. In: Jagt JWM, Donovan SK, Jagt-Yazykova EA (eds) Fossils of the type Maastrichtian (Part 1). Ser Geol Spec issue 8:5–32

    Google Scholar 

  • Jagt JWM, Smit J, Schulp A (2003) Early Paleocene ammonites and other molluscan taxa from the Ankerpoort-Curfs quarry (Geulhem, southern Limburg, the Netherlands). In: Lamolda MA (ed) Bioevents: their stratigraphical records, patterns and causes. Caravaca, 3rd–8th June 2003, Ayuntamiento de Caravaca de la Cruz

    Google Scholar 

  • Jagt JWM, Goolaerts S, Jagt-Yazykova EA, Cremers G, Verhesen W (2006) First record of Phylloptychoceras (Ammonoidea) from the Maastrichtian type area, The Netherlands. Bull Inst Roy Sci nat Belg, Sci Terre 76:97–103

    Google Scholar 

  • Jagt-Yazykova EA (2011) Palaeobiogeographical and palaeobiological aspects of mid- and Late Cretaceous ammonite evolution and bio-events in the Russian Pacific. Scr Geol 143:15–122

    Google Scholar 

  • Jagt-Yazykova EA (2012) Ammonite faunal dynamics across bio-events during the mid- and Late Cretaceous along the Russian Pacific coast. Acta Palaeontol Pol 57:737–748

    Article  Google Scholar 

  • Jeffrey CH (1997) All change at the Cretaceous-Tertiary boundary? Echinoids from the Maastrichtian and Danian of the Mangyshlak Peninsula, Kazakhstan. Palaeontology 40:659–712

    Google Scholar 

  • Keller G, Abramovich S, Berner Z, Adatte T (2009) Biotic effects of the Chicxulub impact, K-T catastrophe and sea level change in Texas. Palaeogeogr Palaeoclimatol Palaeoecol 271:52–68

    Article  Google Scholar 

  • Kennedy WJ (1986) The Campanian-Maastrichtian ammonite sequence in the environs of Maastricht (Limburg, the Netherlands), Limburg and Liège provinces (Belgium). Newsl Stratigr 16:149–168

    Article  Google Scholar 

  • Kennedy WJ (1987) The ammonite faunas of the type Maastrichtian, with a revision of Ammonites colligatus Binkhorst, 1861. Bull de l’Inst Roy des Sci Nat de Belgique 56:151–267

    Google Scholar 

  • Kennedy WJ (1993) Ammonite faunas of the European Maastrichtian; diversity and extinction. In: House MR (ed) The ammonoidea: environment ecology evolutionary change, Systematics Association Spec. vol 47. Clarendon Press, Oxford, pp 285–326

    Google Scholar 

  • Kennedy WJ, Cobban WA (2000) Maastrichtian (Late Cretaceous) ammonites from the Owl Creek Formation in northeastern Mississippi, U.S.A. Acta Geol Pol 50:175–190

    Google Scholar 

  • Kennedy WJ, Jagt JWM (1998) Additional Late Cretaceous ammonite records from the Maastrichtian type area. Bull Inst Roy des Sci de Belgique 68:155–174

    Google Scholar 

  • Kennedy WJ, Gale AS, Hansen TA (2001) The last Maastrichtian ammonites from the Brazos River sections in Falls County, Texas. Cretac Res 22:163–171

    Article  Google Scholar 

  • Kiessling W, Claeys P (2002) A geographic database approach to the KT Boundary. In: Buffetaut E, Koeberl C (eds) Geological and biological effects of impact events. Springer, Berlin

    Google Scholar 

  • Kilian W, Reboul P (1909) Les céphalopodes néocrétacés des îles Seymour et Snow Hill. Wissenschaftliche Ergebnisse der Schwedischen Südpolar-Expedition 3:1–75

    Google Scholar 

  • Klinger HC (1981) Speculations on buoyancy control and ecology in some heteromorph ammonites. In: House MR, Senior JR (eds) The Ammonoidea. Systematics Association Special vol 18. Academic , New York

    Google Scholar 

  • Kodama K (2003) Magnetostratigraphic correlation of the Upper Cretaceous System in the North Pacific. J Asian Earth Sci 21:949–956

    Article  Google Scholar 

  • Kodama K, Maeda H, Shigeta Y, Kase T, Takeuchi T (2000) Magetostratigraphy of Upper Cretaceous strata in South Sakhalin, Russian Far East. Cretac Res 21:469–478

    Article  Google Scholar 

  • Kossmat F (1895–1898) Untersuchungen über die Südindische Kreideformation. Beitr Paläont Österr. Ungarns Orients 9(1895):97–203; 11(1897):1–46; 11(1898):89–152

    Google Scholar 

  • Kruta I, Landman NH, Rouget I, Cecca F, Tafforeau P (2011) The role of ammonites in the marine Mesozoic food web revealed by jaw preservation. Science 311:70–72

    Article  Google Scholar 

  • Lamarck JP (1801) Système des animaux sans vertèbres. Verdière, Paris

    Google Scholar 

  • Lamarck JP (1822) Histoire naturelle des animaux sans vertèbres. Verdière, Paris

    Google Scholar 

  • Landman NH (1988) Early ontogeny of Mesozoic ammonites and nautilids. In: Wiedmann J, Kullmann J (eds) Cephalopods—present and past. Schweizerbart, Stuttgart

    Google Scholar 

  • Landman NH, Waage KM (1993) Scaphitid ammonites of the Upper Cretaceous (Maastrichtian) Fox Hills Formation in South Dakota and Wyoming. Am Mus Natl Hist Bull 215:1–257

    Google Scholar 

  • Landman NH, Tanabe K, Shigeta Y (1996) Ammonoid embryonic development. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York

    Google Scholar 

  • Landman NH, Johnson RO, Edwards LE (2004a) Cephalopods from the Cretaceous/Tertiary boundary interval on the Atlantic Coastal Plain, with a description of the highest ammonite zones in North America. Part 1. Maryland and North Carolina. Amer Mus Novatites 3454:1–66

    Article  Google Scholar 

  • Landman NH, Johnson RO, Edwards LE (2004b) Cephalopods from the Cretaceous/Tertiary Boundary interval on the Atlantic Coastal Plain, with a description of the highest ammonite zones in North America. Part 2. Northeastern Monmouth County, New Jersey. Bull Amer Mus Natl Hist 287:1–107

    Article  Google Scholar 

  • Landman NH, Johnson RO, Garb MP, Edwards LE, Kyte FT (2007) Cephalopods from the Cretaceous/Tertiary boundary interval on the Atlantic Coastal Plain, with a description of the highest ammonite zones in North America. Part III. Manasquan River Basin, Monmouth County, New New Jersey. Bull Amer Mus Natl Hist 303:1–122

    Article  Google Scholar 

  • Landman NH, Cobban WA, Larson NL (2012a) Mode of life and habitat of scaphitid ammonites. Geobios 45:87–98

    Article  Google Scholar 

  • Landman NH, Garb MP, Rovelli R, Ebel DS, Edwards LE (2012b) Short-term survival of ammonites in New Jersey after the end-Cretaceous bolide impact. Acta Palaeontol Pol 57:703–715

    Article  Google Scholar 

  • Landman NH, Goolaerts S, Jagt JWM, Jagt-Yazykova EA, Machalski M, Yacobucci MM (2014) Ammonite extinction and nautilid survival at the end of the Cretaceous. Geology 42:707–710

    Google Scholar 

  • Larina E, Landman NH, Cochran K, Thibault N, Garb MP, Edwards LE (2012) Insights into climatic and faunal changes at the end of the Maastrictian at the type locality of the Owl Creek Formation, Mississippi. GSA Abstracts with Programs, 44:398

    Google Scholar 

  • Macellari CE (1986) Late Campanian-Maastrichtian ammonite fauna from Seymour Island (Antarctic Peninsula). Paleontol Soc Mem 18:1–55

    Google Scholar 

  • Macellari CE (1988) Stratigraphy, sedimentology, and paleontology of Upper Cretaceous/Paleocene shelf sediments of Seymour Island. In: Feldmann RM, Woodburne MO (eds) Geology and paleontology of Seymour Island, Antarctic Peninsula. GSA Mem. 169, pp 25–53

    Google Scholar 

  • Machalski M (1998) Granica kreda-trzeciorzęd w przełomie Wisy. Prz Geologiczny 46:1153–1161 (in Polish)

    Google Scholar 

  • Machalski M (2002) Danian ammonites: a discussion. Bull Geol Soc Den 49:49–52

    Google Scholar 

  • Machalski M (2005a) The youngest Maastrichtian ammonite faunas from Poland and their dating by scaphitids. Cretac Res 26:813–836

    Article  Google Scholar 

  • Machalski M (2005b) Late Maastrichtian and earliest Danian scaphitid ammonites from central Europe: taxonomy, evolution, and extinction. Acta Palaeontol Pol 50:653–696

    Google Scholar 

  • Machalski M (2012) Stratigraphically important ammonites from the Campanian-Maastrichtian boundary interval of the Middle Vistula River section, central Poland. Acta Geol Pol 61:91–116

    Google Scholar 

  • Machalski M, Walaszczyk I (1987) Faunal condensation and mixing in the uppermost Maastrichtian/Danian greensand (Middle Vistula Valley, central Poland). Acta Geol Pol 37:75–91

    Google Scholar 

  • Machalski M, Walaszczyk I (1988) The youngest (uppermost Maastrichtian) ammonites in the Middle Vistula Valley, central Poland. Bull Polish Acad Sci Earth Sci 36:67–70

    Google Scholar 

  • Machalski M, Heinberg C (2005) Evidence for ammonite survival into the Danian (Paleogene) from the Cerithium Limestone at Stevns Klint, Denmark. Bull Geol Soc Den 52:97–111

    CAS  Google Scholar 

  • Machalski M, Jagt JWM, Heinberg C, Landman NH, Håkansson E (2009) Dańskie amonity—obecny stan wiedzy i perspektywy badań. Prz Geol 57:486–493 [in Polish]

    Google Scholar 

  • Machalski M, Jagt JWM, Alekseev AS, Jagt-Yazykova EA (2012) Terminal Maastrichtian ammonites from Turkmenistan, Central Asia. Acta Palaeontol Pol 57:729–735

    Article  Google Scholar 

  • Mai H (1998) Paleocene coccoliths and coccospheres in deposits of the Maastrichtian stage and the “type locality” and type area in SE Limburg, The Netherlands. Mar Micropaleontol 36:1–12

    Article  Google Scholar 

  • Marshall CR, Ward PD (1996) Sudden and gradual molluscan extinctions in the latest Cretaceous in western European Tethys. Science 274:1360–1363

    Article  CAS  Google Scholar 

  • Mathey B (1982) El Cretácico superior de Arco Vasco. In: El Cretácico de España. Universidad Complutense de Madrid, Madrid

    Google Scholar 

  • Matsumoto T (1938) Zelandites, a genus of Cretaceous ammonite. Jpn J Geogr Geol 15:137–148

    Google Scholar 

  • Matsumoto T (1942) A short note on the Japanese Cretaceous Phylloceratidae. Proc Imp Acad Jpn 18:674–676

    Article  Google Scholar 

  • Matsumoto T (1979a) Some new species of Pachydiscus from the Tobetsu and the Hobetsu valleys. In: Matsumoto T, Kanie Y, Yoshida S (eds) Notes on Pachydiscus from Hokkaido, vol 24. Mem Fac Sci Kyushu Univ, Series D, Geology. pp 47–73, 50–64

    Google Scholar 

  • Matsumoto T (1984) Some gaudryceratid ammonites from the Campanian and Maastrichtian of Hokkaido, Part 1. Sci Rep Yokosuka City Mus 32:1–10

    Google Scholar 

  • Matsumoto T Yoshida S (1979b) A new gaudryceratid ammonite from the Cretaceous of Hokkaido and Saghalien (Studies of the Cretaceous ammonites from Hokkaido and Saghalien XXXVII). Trans Proc Palaeontol Soc Jpn 114:65–76

    Google Scholar 

  • Meek FB (1858) Descriptions of new organic remains from the Cretaceous rocks of Vancouver’s Island. Transactions of Albany Institute 4, pp 37–49

    Google Scholar 

  • Miller KG, Sherrell RM, Browning JV, Field MP, Gallagher W, Olsson RK, Sugarman PJ, Tuorto S, Wahyudi H (2010) Relationship between mass extinction and iridium across the Cretaceous-Paleogene boundary in New Jersey. Geology 38:867–870

    Article  CAS  Google Scholar 

  • Molina E, Alegret L, Arenilas I, Arz JA, Gallala N, Hardenbol J von, Salis K, Steurbaut E, Vandenberghe N, Zaghbib-Turki D (2006) The global boundary stratotype section and point for the base of the Danian stage (Paleocene, Paleogene, “Tertiary”, Cenozoic) at El Kef, Tunisia—original definition and revision. Episodes 29:263–273

    Article  Google Scholar 

  • Moriya K, Nishi H, Kawahata H, Tanabe K, Takayanagi Y (2003) Demersal habitat of Late Cretaceous ammonoids: evidence from oxygen isotopes for the Campanian (Late Cretaceous) northwestern Pacific thermal structure. Geology 31:167–170

    Article  CAS  Google Scholar 

  • Morozumi Y (1985) Late Cretaceous (Campanian and Maastrichtian) ammonites from Awaji Island, southwest Japan, vol 39. Osaka Mus Nat Hist 39:1–58

    Google Scholar 

  • Morton SG (1834) Synopsis of the organic remains of the Cretaceous groups of the United States. Illustrated by nineteen plates, to which is added an appendix containing a tabular view of the Tertiary fossils discovered in America. Key and Biddle, Philadelphia

    Book  Google Scholar 

  • Moskvin MM (ed) (1959) Atlas of Upper Cretaceous fauna from northern Caucasus and Crimea. Trudy VNIIGAZ, Gostoptechizdat, Moscow (in Russian)

    Google Scholar 

  • Naidin DP (1987) The Cretaceous-Tertiary boundary in Mangyshlak, U.S.S.R. Geol Mag 124:13–19

    Article  Google Scholar 

  • Olivero EB (2012) Sedimentary cycles, ammonite diversity and palaeoenvironmental changes in the Upper Cretaceous Marambio Group, Antarctica. Cretac Res 34:348–366

    Article  Google Scholar 

  • Orbigny AD d’ (1850) Prodrome de paléontologie stratigraphique universelle des animaux mollusques et rayonnés 2. Masson, Paris

    Book  Google Scholar 

  • Perch-Nielsen K (1985) Mesozoic calcareous nannofossils. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton stratigraphy. Cambridge University, Cambridge

    Google Scholar 

  • Peryt D (1980) Planktic foraminifera zonation of the Upper Cretaceous in the Middle Vistula Valley, Poland. Palaeontol Pol 41:3–101

    Google Scholar 

  • Pervinquière L (1907) Études de paléontologie tunisienne. 1. Céphalopodes des terrains secondaires. Carte Géologique de la Tunisie, Direction Générale des Travaux Publics, De Rudeval, Paris

    Google Scholar 

  • Preisinger A, Aslanian S, Stoykova K, Grass F, Mauritsch HJ, Scholger R (1993) Cretaceous/Tertiary boundary sections on the coast of the Black Sea near Bjala (Bulgaria). Palaeogeogr Palaeoclimatol Palaeoecol 104:219–228

    Article  Google Scholar 

  • Racki G, Machalski M, Koeberl C, Harasimiuk M (2011) The weathering-modified iridium record of a new Cretaceous-Paleogene site at Lechówka near Chelm, SE Poland, and its palaeobiologic implications. Acta Palaeontol Pol 56:205–215

    Article  Google Scholar 

  • Rasmussen JA, Heinberg C, Håkansson E (2005) Planktonic foraminifers, biostratigraphy and the diachronous deposition of the lowermost Danian Cerithium Limestone at Stevns Klint, Denmark. Bull Geol Soc Den 52:113–131

    Google Scholar 

  • Redtenbacher A (1873) Die Cephalopodenfauna der Gosauschichten in den nordöstlichen Alpen. Abh der KK Geol Reichsanst 5:91–114

    Google Scholar 

  • Rocchia R, Robin E, Smit J, Pierrard O, Lefevre I (2002) K/T impact remains in an ammonite from the uppermost Maastrichtian of Bidart section (French Basque Country). In: Buffetaut E, Koeberl C (eds) Geological and biological effects of impact events. Springer, Berlin

    Google Scholar 

  • Salazar C, Stinnesbeck W, Quinzio-Sinn LA (2010) Ammonites from the Maastrichtian (Upper Cretaceous) Quiriquina Formation in central Chile. N Jb Geol Paläontol Abh 257:181–236

    Article  Google Scholar 

  • Say T (1821) Observations on some species of zoophytes, shells, & etc. principally fossil. Am J Sci 2:34–45

    Google Scholar 

  • Schiøler P, Brinkhuis H, Roncaglia L, Wilson GJ (1997) Dinoflagellate biostratigraphy and sequence stratigraphy of the Type Maastrichtian (Upper Cretaceous), ENCI Quarry, The Netherlands. Mar Micropaleontol 31:65–95

    Google Scholar 

  • Schlüter C (1871–1876) Cephalopoden der oberen deutschen Kreide. Palaeontographica 21:1–120; 24:1–144

    Google Scholar 

  • Schulte P, Alegret L, Arenillas I, Arz JA, Barton PJ, Bown PR, Bralower TJ, Christeson GL, Claeys P, Cockell CS, Collins GS, Deutsch A, Goldin TJ, Goto K, Grajales-Nishimura JM, Grieve RAF, Gulick SPS, Johnson KR, Kiessling W, Koeberl C, Kring DA, MacLeod KG, Matsui T, Melosh J, Montanari A, Morgan JV, Neal CR, Nichols DJ, Norris RD, Pierazzo E, Ravizza G, Rebolledo-Vieyra M, Reimold WU, Robin E, Salge T, Speijer RP, Sweet AR, Urrutia-Fucugauchi J, Vajda V, Whalen MT, Willumsen PS (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327:1214–1218

    Article  CAS  Google Scholar 

  • Seki K, Tanabe K, Landman NH, Jacobs DK (2000) Hydrodynamic analysis of late Cretaceous desmoceratine ammonites. Rev Paléobiol Vol spéc 8:141–155

    Google Scholar 

  • Seunes J (1890) Contributions à l’étude des cephalopods du Crétacé supérieur de France, 1. Ammonites du Calcaire à Baculites du Cotentin. Mém Soc géol de France. Paléont 1:1–7

    Google Scholar 

  • Seunes J (1891) Contributions à l’étude des cephalopods du Crétacé supérieur de France, 1. Ammonites du Calcaire à Baculites du Cotentin (Suite). II. Ammonites du Campanien de la region sous-pyrénéenne, Département de Landes. Mém Soc géol de France. Paléont 2:8–22

    Google Scholar 

  • Smit J, Brinkhuis H (1996) The Geulhemmerberg Cretaceous/Tertiary boundary section (Maastrichtian type area, SE Netherlands); summary of results and a scenario of events. In: Brinkhuis H, Smit J (eds) The Geulhemmerberg Cretaceous/Tertiary boundary section (Maastrichtian type area, SE Netherlands). Geol Mijnbouw 75(2–3):293–307

    Google Scholar 

  • Smit J, Keller G, Zargouni F, Razgallah S, Shimi M, Ben Abdelkader O, Ben Haj Ali N, Ben Salem H (1997) The El Kef sections and sampling procedures. Mar Micropaleontol 29:65–103

    Article  Google Scholar 

  • Sowerby J (1812–1822) The mineral conchology of Great Britain. The author, London

    Google Scholar 

  • Spath LF (1953) The Upper Cretaceous cephalopod fauna of Grahamland. Scientific Reports of the British Antarctic Survey 3:1–60

    Google Scholar 

  • Stephenson LW (1941) The larger invertebrates of the Navarro Group of Texas (exclusive of corals and crustaceans and exclusive of the fauna of the Escondido Formation). Univ Texas Bull 4101:1–641

    Google Scholar 

  • Stephenson LW (1955) Owl Creek (Upper Cretaceous) fossils from Crowley’s Ridge, southeastern Missouri. USGS Professional Paper 274, 97–140

    Google Scholar 

  • Stinnesbeck W, Keller G (1996) Environmental changes across the Cretaceous-Tertiary boundary in northeastern Brazil. In: McLeod N, Keller G (eds) Cretaceous-Tertiary mass extinctions: biotic and environmental changes. WW Norton & Co, New York

    Google Scholar 

  • Stinnesbeck W, Ifrim C, Salazar C (2012) The last Cretaceous ammonites in Latin America. Acta Palaeontol Pol 57:717–728

    Article  Google Scholar 

  • Stoykova K, Ivanov M (2004) Calcareous nannofossils and sequence stratigraphy of the Cretaceous/Tertiary transition in Bulgaria. J Nannoplankton Res 26:47–61

    Article  Google Scholar 

  • Stoykova K, Ivanov M (2005) Calcareous nannofossils and sequence stratigraphy of the Cretaceous/Tertiary transition in Bulgaria (Errata). J Nannoplankton Res 27:99–106

    Google Scholar 

  • Surlyk F (1997) A cool-water carbonate ramp with bryozoan mounds: Late Cretaceous-Danian of the Danish Basin. In: James NP, Clarke JDA (eds) Cool-water carbonates, vol 56. SEPM Special Publications, pp 293–307

    Google Scholar 

  • Surlyk F, Nielsen JM (1999) The last ammonite? Bull Geol Soc Den 46:115–119

    Google Scholar 

  • Surlyk F, Damholt T, Bjerager M (2006) Stevns Klint, Denmark: uppermost Maastrichtian chalk, Cretaceous-Tertiary boundary, and lower Danian bryozoan mound complex. Bull Geol Soc Den 54:1–48

    Google Scholar 

  • Tanabe K (1989) Endocochliate embryo model in the Mesozoic Ammonitida. Hist Biol 2:183–196

    Article  Google Scholar 

  • Tanabe K, Landman NH (2002) Morphological diversity of the jaws of Cretaceous Ammonoidea. In: Summesberger H, Histon K, Daurer A (eds) Cephalopods-present and past. Abh Geol B-A 57:157–165

    Google Scholar 

  • Tanabe K, Misaki A, Landman NH, Kato T (2013) The jaw apparatuses of Cretaceous Phylloceratina (Ammonoidea). Lethaia 46:399–408

    Article  Google Scholar 

  • Ten Kate WGHZ, Sprenger A (1993) Orbital cyclicities above and below the Cretaceous/Paleogene boundary at Zumaya (N Spain), Agost and Relleu (SE Spain). Sediment Geol 87:69–101

    Article  Google Scholar 

  • Tobin TS, Ward PD, Steig EJ, Olivero EB, Hilburn IA, Mitchell RN, Diamond MR, Raub TD, Kirschvink JL (2012) Extinction patterns, δ18O trends, and magnetostratigraphy from a southern high-latitude Cretaceous-Paleogene section: links with Deccan volcanism. Palaeogeogr Palaeoclimatol Palaeoecol 350–352:180–188

    Article  Google Scholar 

  • Tuomey M (1856) Description of some new fossils from the Cretaceous rocks of the southern States. Proc Acad of Natl Sci Phila 7(1854):167–172

    Google Scholar 

  • Van der Tuuk LA, Zijlstra JJP (1979) Eerste vondst van een Nostoceras [sic] (orde Ammonoidea) in Nederland. Grondboor Hamer 33:116–120

    Google Scholar 

  • Vellekoop J, Sluijs A, Smit J, Schouten S, Weijers JWH, Sinninghe Damste JS, Brinkhuis H (2014) Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary. Proc Natl Acad of Sci U S A 111:7531–7541

    Google Scholar 

  • Wang SC, Marshall CR (2004) Improved confidence intervals for estimating the position of a mass extinction boundary. Paleobiology 30:5–18

    Article  CAS  Google Scholar 

  • Ward PD (1996) Ammonoid extinction. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York

    Google Scholar 

  • Ward PD, Kennedy WJ (1993) Maastrichtian ammonites from the Biscay region (France, Spain). Paleontol Soc Mem 34:1–58

    Google Scholar 

  • Ward PD, Signor PW III (1983) Evolutionary tempo in Jurassic and Cretaceous ammonites. Paleobiology 9:183–198

    Article  Google Scholar 

  • Westermann GEG (1996) Ammonoid life and habitat. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York

    Google Scholar 

  • Wiedmann J (1987) The K/T Boundary section of Zumaya, Guipuzcoa. In: Lamolda MA (ed) Field excursion to the K/T boundary at Zumaya and Biarritz. Paleontología et Evolutío: exstinctionis phaenomina III. Journados de Paleontología. Keia (Vizcaya), Octobre de 1987, Univ de Païs Vasco, Bilbao

    Google Scholar 

  • Wiedmann J (1988a) Ammonite extinction and the “Cretaceous-Tertiary Boundary Event”. In: Wiedmann J, Kullmann J (eds) Cephalopods—present and past. Schweizerbart, Stuttgart

    Google Scholar 

  • Wiedmann J (1988b) The Basque coastal sections of the K/T Boundary—a key for understanding “mass extinction” in the fossil record. Rev Esp Paleont, no. extraord 1988:127–140

    Google Scholar 

  • Yazykova EA (1991) Maastrichtian ammonoids of the eastern USSR and their stratigraphical significance. Bull MOIP Geol 66:68–73 [In Russian]

    Google Scholar 

  • Yazikova EA (1994) Maastrichtian ammonites and biostratigraphy of the Sakhalin and Shikotan islands, Far Eastern Russia. Acta Geol Pol 44:277–303

    Google Scholar 

  • Yazykova EA (2004) Ammonite biozonation and litho-chronostratigraphy of the Cretaceous in Sakhalin and adjacent territories of Far East Russia. Acta Geol Pol 54:273–312

    Google Scholar 

  • Zijlstra JJP (1994) Sedimentology of the Late Cretaceous and Early Tertiary (tuffaceous) chalk of northwest Europe. Geol Ultraiect 119:1–192

    Google Scholar 

  • Zinsmeister WJ (1998) Discovery of fish mortality horizon at the K-T boundary on Seymour Island: re-evaluation of events at the end of the Cretaceous. J Paleontol 72:556–571

    Article  Google Scholar 

  • Zinsmeister WJ, Feldmann RM (1996) Late Cretaceous faunal changes in the high southern latitudes: a harbinger of global biotic catastrophe? In: MacLeod N, Keller G (eds) Cretaceous-Tertiary mass extinctions: biotic and environmental changes. WW Norton, New York

    Google Scholar 

  • Zinsmeister WJ, Woodburne O, Elliot DH (1989) Latest Cretaceous/earliest Tertiary transition on Seymour Island, Antarctica. J Paleontol 63:731–738

    Article  Google Scholar 

  • Zonova TD, Kazintsova LT, Yazykova EA (1993) Atlas of the main groups of the Cretaceous fauna from Sakhalin. Nedra, Sankt Peterburg (In Russian)

    Google Scholar 

Download references

Acknowledgments

We thank Margaret (Peg) Yacobucci (Bowling Green University) and an anonymous reviewer for very helpful comments that materially improved the manuscript. NHL thanks J. Kirk Cochran (Stony Brook University) for helpful discussions. SG thanks Etienne Steurbaut (Royal Belgian Institute of Natural Sciences), Christian Dupuis (Université de Mons, Michel ­Hennebert (Université de Mons), and Mohadinne Yahia (Kalaat Senan) for helpful discussions and assistance in the field. This research was supported by NSF Grant DEB-1353510 to NHL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil H. Landman .

Editor information

Editors and Affiliations

Appendix of Localities

Appendix of Localities

1: Manasquan River Basin, Monmouth County, New Jersey, U.S.A., 40°12ʹ30ʺN, 74°17ʹ30ʺW

2: Northeastern Monmouth County, New Jersey, U.S.A., 40°17ʹ30ʺN, 74°7ʹ14ʺW

3: Round Bay, Anne Arundel County, Maryland, U.S.A., 39°2ʹ13ʺN, 76°33ʹ28ʺW

4: Stoddard and Scott counties, Missouri, U.S.A., 37°00ʹ17ʺN, 89°51ʹ02ʺW

5: Tippah County, Mississippi, U.S.A., 34°44ʹ55ʺN, 88°54ʹ47ʺW

6: Chickasaw County, Mississippi, U.S.A., 33°58ʹ04ʺN, 89°00ʹ05ʺW

7: Brazos River, Falls County, Texas, U.S.A.,31°8ʹ11ʺN, 96°49ʹ40ʺW

8: La Popa Basin, Northeastern Mexico, 26°12ʹ44ʺN, 101°4ʹ25ʺW

9: Stevns Klint, Denmark, 55°16ʹ45ʺN, 12°26ʹ47ʺE

10: Kjølby Gård, Denmark, 57°3ʹ15ʺN, 8°44ʹ55ʺE

11: “Dania” Quarry, northern Denmark, 56°39ʹ42ʺN, 10°1ʹ56ʺE

12: Maastrichtian Type Area, The Netherlands and Belgium, 50°49ʹ18.41ʺN, 5°41ʹ39.54ʺE

13: Nasiłów, Poland, 51°20ʹ39ʺN, 21°57ʹ35ʺE

14: Mełgiew, Poland, 51°13ʹ30ʺN, 22°47ʹ8ʺE

15: Lechówka, Poland, 51°10ʹ17ʺN, 23°14ʹ43ʺE

16: Kyzylsay, Kazakhstan, 44°20ʹ1ʺN, 52°26ʹ10ʺE

17: Sumbar River, Turkmenistan, 38°27ʹ18ʺN, 56°12ʹ41ʺE

18: Zumaya, Bay of Biscay Area, 43°17ʹ54ʺN, 2°16ʹ16ʺW

19: Hendaye, Bay of Biscay Area, 43°23ʹ1ʺN, 1°49ʹ26ʺW

20: Bidart, Bay of Biscay Area, 43°26ʹ25ʺN, 1°35ʹ41ʺW

21: Bjala (= Byala), Bulgaria, 42°52ʹ44ʺN, 27°53ʹ57ʺE

22: Kalaat Senan, Tunisia, 35°47ʹ15ʺN, 8°27ʹ21ʺE

23: El Kef, Tunisia, 36°9ʹ15ʺN, 8°38ʹ55ʺE

24: Garn Halfaya, Tunisia, 36°0ʹ40ʺN, 8°33ʹ23ʺE

25: Dababiya Quarry Corehole, Egypt, 25°30ʹ10ʺN, 32°31ʹ27ʺE

26: Naiba River Valley, Sakhalin, Far East Russia, 47°28ʹ34ʺN, 142°24ʹ10ʺE

27: Poty Quarry, Brazil, 7°53ʹ95ʺS, 34°51ʹ14ʺW

28: Lomas Colorados, Bajada de Jagüel, Neuquen Basin, Argentina, 37°59ʹ24ʺS, 68°47ʹ38ʺW

29: Seymour Island, Antarctica, 64°16ʹ50ʺS, 56°43ʹ23ʺW

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Landman, N., Goolaerts, S., Jagt, J., Jagt-Yazykova, E., Machalski, M. (2015). Ammonites on the Brink of Extinction: Diversity, Abundance, and Ecology of the Order Ammonoidea at the Cretaceous/Paleogene (K/Pg) Boundary. In: Klug, C., Korn, D., De Baets, K., Kruta, I., Mapes, R. (eds) Ammonoid Paleobiology: From macroevolution to paleogeography. Topics in Geobiology, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9633-0_19

Download citation

Publish with us

Policies and ethics