Skip to main content

Paleobiogeography of Late Cretaceous Ammonoids

  • Chapter
  • First Online:
Ammonoid Paleobiology: From macroevolution to paleogeography

Part of the book series: Topics in Geobiology ((TGBI,volume 44))

Abstract

Ammonoids were dominant elements of marine Cretaceous faunas. Their fossils are important biostratigraphic indicators, in some cases with worldwide distribution. Their paleobiogeographic distributions were influenced by changing continental positions, currents, sea level change, and perhaps by their mode of life as reflected in the evolution of many diverse lineages of heteromorphic, possibly rather vertically migrating than horizontally swimming taxa through the Cretaceous. Here, we review the current paleobiogeographic understanding of Late Cretaceous ammonoid distribution in an effort to complement and add to previous work in this field. Four principal paleobiogeographic areas can be distinguished in the Cretaceous: The Boreal Realm, the Tethyan Realm, the Pacific Realm, and the Austral Realm. A Tethyan Superrealm is repeatedly recognized throughout the Late Cretaceous, although represented by varying taxa. Migration between the realms and provinces appears to be linked to changes of migration routes, triggered by sea level changes. At the end of the Cretaceous, provincialism disappears, preceding the extinction of the Ammonoids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson FM (1958) Upper Cretaceous of the Pacific Coast. GSA Mem 71

    Google Scholar 

  • Bando Y, Sato T, Matsumoto T (1987) Palaeobiogeography of the Mesozoic Ammonoidea, with special reference to Asia and the Pacific. In: Taira A, Tashiro M (eds) Historical biogeography and plate tectonic evolution of Japan and Eastern Asia. Terra Publications, Tokyo

    Google Scholar 

  • Bardhan S, Gangopadhyay TK, Mandal U (2002) How far did India drift during the Late Cretaceous?—Placenticeras kaffrarium Etheridge, 1904 (Ammonoidea) used as a measuring tape. Sedim Geol 147:193–217

    Article  Google Scholar 

  • Birkelund T (1993) Ammonites from the Maastrichtian White Chalk in Denmark. Bull Geol Soc Denmark 40:33–81

    Article  Google Scholar 

  • Blakey RC (2002) Global Map of the Late Cretaceous. http://jan.ucc.nau.edu/~rcb7/090_Cretaceous_2globes.jpg. Accessed July 2014.

  • Cecca F (2002) Palaeobiogeography of Marine invertebrates—concepts and methods. Taylor & Francis, London

    Google Scholar 

  • Cobban WA (1972) New and little known ammonites from the Upper Cretaceous (Cenomanian and Turonian) of the Western Interior of the United States. US Geol Surv Prof Pap 699:1–24

    Google Scholar 

  • Cobban WA (1993) Diversity and distribution of Late Cretaceous ammonites, Western Interior, United States. In: Caldwell WGE, Kauffman EG (eds) Evolution of the Western Interior Basin. Geol Ass Canada Sp Pap, 39:435–451

    Google Scholar 

  • Cobban WA, Walaszczyk I, Obradovich JD, McKinney KC (2006) A USGS zonal table for the Upper Cretaceous middle Cenomanian-Maastrichtian of the Western Interior of the United States based on ammonites, inoceramids and radiometric ages. US Geol Surv Open File Rep 2006-1250:1–47

    Google Scholar 

  • Cooper MR, Owen HG (2011) Evolutionary relationships among Schloenbachiidae (Cretaceous Ammonoidea: Hoplitoidea), with a revised classification of the family. N Jahrb Geol Paläont Abh 262:289–307

    Article  Google Scholar 

  • Courville P (2007) Échanges et colonisations fauniques (Ammonitina) entre Téthys et Atlantique sud au Crétacé Supérieur: voies atlantiques ou sahariennes? Carn Geol/Notebooks Geol 2007-02:1–4

    Google Scholar 

  • Courville P, Lang J, Thierry J (1998) Ammonite faunal exchanges between South Tethyan platforms and South Atlantic during the uppermost Cenomanian–lowermost/middle Turonian in the Benue Through (Nigeria). Geobios 31:187–214

    Article  Google Scholar 

  • Crame JA, Pirrie D, Riding JB, Thomson MRA (1991) Campanian-Maastrichtian (Cretaceous) stratigraphy of the James Ross Island area, Antarctica. J Geol Soc London 148:1125–40

    Article  Google Scholar 

  • De Baets K, Bert D, Hofmann R, Monnet C, Yacobucci MM, Klug C (2015) Ammonoid intraspecific variability. In: Klug C, Korn D, De Baets K, Kruta I, Mapes R (eds) Ammonoid paleobiology: From anatomy to paleoecology

    Google Scholar 

  • Elder WP (1991) Molluscan paleoecology and sedimentation patterns of the Cenomanian–Turonian extinction interval in the southern Colorado Plateau region. In: Nations JD, Eaton JG (eds) Stratigraphy, depositional environments, and sedimentary tectonics of the western margin, Cretaceous Western Interior Seaway. GSA Spec Pap 260:113–37

    Google Scholar 

  • Engeser T, Keupp H (2002) Phylogeny of the aptychi-possessing Neoammonoidea (Aptychophora nov., Cephalopoda). Lethaia 34:79–96

    Google Scholar 

  • Freund R, Raab M (1969) Lower Turonian ammonites from Israel. Sp Pap Palaeont 4:1–83

    Google Scholar 

  • Goolaerts S (2010) Late Cretaceous ammonites from Tunisia: Chronology and causes of their extinction and extrapolation to other areas [Thesis]. Type, Katholieke Universiteit Leuven, Leuven

    Google Scholar 

  • Goolaerts S, Kennedy WJ, Dupuis C, Steurbaut E (2004) Terminal Maastrichtian ammonites from the Cretaceous-Paleogene Global Stratotype Section and Point, El Kef, Tunisia. Cret Res 25:313–328

    Article  Google Scholar 

  • Haggart JW, Ward PD, Orr W (2005) Turonian (Upper Cretaceous) lithostratigraphy and biochronology, southern Gulf Islands, British Columbia, and northern San Juan Islands, Washington State. Canad J Earth Sci 42:2001–2020

    Article  Google Scholar 

  • Hancock JM, Kennedy WJ, Cobban WA (1993) A correlation of the Upper Albian to basal Coniacian sequences of northwest Europe, Texas and the United States Western Interior. In: Caldwell WGE, Kauffman EG (eds) Evolution of the Western Interior Basin. Geol Assoc Canada Spec Pap 39:453–476

    Google Scholar 

  • Ifrim C, Stinnesbeck W (2007) Early Turonian ammonites from Vallecillo, north-eastern Mexico: taxonomy, biostratigraphy and palaeobiogeographic significance. Cret Res 28:642–664

    Article  Google Scholar 

  • Ifrim C, Stinnesbeck W (2008) Cenomanian–Turonian high-resolution biostratigraphy of north-eastern Mexico and its correlation with the GSSP and Europe. Cret Res 29:943–956

    Article  Google Scholar 

  • Ifrim C, Stinnesbeck W (2010) Migration pathways of the late Campanian and Maastrichtian shallow facies ammonite Sphenodiscus in North America. Palaeogeogr, Palaeoclim, Palaeoecol 292:96–102

    Article  Google Scholar 

  • Ifrim C, Stinnesbeck W, Lopez-Oliva JG (2004) Maastrichtian Cephalopods from the Méndez Formation at Cerralvo, Northeastern Mexico. Palaeontology 47:1575–1627

    Article  Google Scholar 

  • Ifrim C, Stinnesbeck W, Ventura JF (2013) An endemic cephalopod assemblage from the lower Campanian (Late Cretaceous) Parras Shale, western Coahuila, Mexico. J Paleontol 87:881–901

    Article  Google Scholar 

  • Jagt JWM (2002) Late Cretaceous ammonite faunas of the Maastrichtian type area. In: Summesberger H, Histon K, Daurer A (eds) Cephalopods—Present and Past. Abh Geol Bundesanst, Wien 57:509–522

    Google Scholar 

  • Jagt-Yazykova E (2011) Palaeobiogeograpical and palaeobiological aspects of mid- and late Cretacous ammonite evolution and bio-events in Russia. Scripta Geologica 143:15–121

    Google Scholar 

  • Jagt-Yazykova E (2012) Ammonite faunal dynamics across bio-events during the mid- and late Cretaceous along the Russian Platform. Acta Paleont Pol 57:737–748

    Article  Google Scholar 

  • Jeletzky JA (1971) Marine Cretaceous biotic provinces and paleogeography of Western and Arctic Canada. Pap Geol Surv of Canada 70-22, p.92

    Google Scholar 

  • Kauffman EG (1977) Geological and biological overview: Western Interior Cretaceous basin. In: Kauffman EG (ed) Cretaceous Facies, Faunas, and Palaeoenvironments across the Western Interior Seaway. The Mountain Geologist 14. The Rocky Mountain Association of Geologists, Denver

    Google Scholar 

  • Kawabe F (2003) Relationship between mid-Cretaceous (upper Albian-Cenomanian) ammonoid facies and lithofacies in the Yezo forearc basin, Hokkaido, Japan. Cret Res 24:751–763

    Article  Google Scholar 

  • Kennedy WJ (1989) Thoughts on the evolution and extinction of Cretaceous ammonites. Proc Geol Assoc 100:251–79

    Article  Google Scholar 

  • Kennedy WJ (1993) Ammonite faunas of the European Maastrichtian; diversity and extinction. In: House MR (ed) The Ammonoidea: Environment, Ecology, and Evolutionary Change. Syst Assoc Spec Vol 47:285–326

    Google Scholar 

  • Kennedy WJ, Cobban WA (1976) Aspects of ammonite biology, biogeography, and biostratigraphy. Sp Pap Palaeont 17:1–94

    Google Scholar 

  • Kennedy WJ, Cobban WA (1991) Stratigraphy and interregional correlations of the Cenomanian–Turonian transition in the Western Interior of the United States near Pueblo, Colorado; a potential boundary stratotype for the base of the Turonian stage. Newslett Stratigr 24:1–33

    Article  Google Scholar 

  • Kennedy WJ, Kaplan U (2000) Ammonitenfaunen des hohen Oberconiac und Santon in Westfalen. Geol Paläont Westfalen 57:1–126

    Google Scholar 

  • Kennedy WJ, Bilotte M, Melchior P (1995) Ammonite faunas, biostratigraphy and sequence stratigraphy of the Coniacian-Santonian of the Corbières (NE Pyrénées). Bull Centre Rech Explor-Prod Elf-Aquitaine 19:377–499

    Google Scholar 

  • Kennedy WJ, Walaszczyk I, Cobban WA (2005a) The global boundary stratotype section and point for the base of the Turonian stage of the Cretaceous: Pueblo, Colorado, U.S.A. Episodes 28:93–104

    Article  Google Scholar 

  • Kennedy WJ, Cobban WA, Hancock JM, Gale AS (2005b) Upper Albian to Lower Cenomanian ammonites from the Main Street Limestone, Grayson Marl and Del Rio Clay in Northeastern Texas. Cret Res 26:349–428

    Article  Google Scholar 

  • Kennedy WJ, Crame JA, Bengtson P, Thomson MRA (2007) Coniacian ammonites from James Ross Island, Antarctica. Cret Res 28:509–531

    Article  Google Scholar 

  • Kennedy WJ, Landman NH, Christensen WK, Cobban WA, Hancock JM (1998) Marine connections in North America during the late Maastrichtian: palaeogeographic and palaeobiogeographic significance of Jeletzkytes nebrascensis Zone cephalopod fauna from the Elk Butte Member of the Pierre Shale, SE South Dakota and NE Nebraska. Cret Res 19:745–775

    Article  Google Scholar 

  • Klinger HC, Kennedy WJ (2001) Stratigraphic and geographic distribution, phylogenetic trends and general comments on the ammonite family Baculitidae Gill, 1871 (with and annotated list of species referred to the family). Ann South African Mus 107:1–290

    Google Scholar 

  • Landman N, Garb MP, Rovelli R DSE, Edwards LE (2012) Short-term survival of ammonites in New Jersey after the end-Cretaceous bolide impact. Acta Paleont Pol 57:703–715

    Article  Google Scholar 

  • Landman NH, Johnson RO, Edwards LE (2004a) Cephalopods from the Cretaceous/Tertiary boundary interval on the Atlantic Coastal Plain, with a description of the highest ammonite zones in North America. Part 1. Maryland and North Carolina. Am Mus Nov 3454:1–64

    Article  Google Scholar 

  • Landman NH, Johnson RO, Edwards LE (2004b) Cephalopods from the Cretaceous/Tertiary Boundary Interval on the Atlantic Coastal Plain, with a description of the highest ammonite zones in North America. Part 2. Northeastern Monmouth County, New Jersey. Bull Am Mus Nat Hist 287:1–107

    Article  Google Scholar 

  • Landman NH, Johnson RO, Garb MP, Edwards LE, Kyte FT (2004c) Cephalopods from the Cretaceous/Tertiary Boundary Interval on the Atlantic Coastal Plain, with a description of the highest ammonite zones in North America. Part 3. Manasquin River Basin, Monmouth County, New Jersey. Bull Am Mus Nat Hist 303:1–122

    Article  Google Scholar 

  • Landman NH, Johnson RO, Garb MP, Edwards LE, Kyte FT (2010) Cephalopods from the Cretaceous/Tertiary Boundary, New Jersey, USA. In: Tanabe K, Shigeta Y, Sasaki T, Hirano H (eds) Cephalopods—Present and past. Tokai University Press, Tokyo

    Google Scholar 

  • Macellari CE (1987) Progressive endemism in the Late Cretaceous ammonite family Kossmaticeratidae and the breakup of Gondwanaland. In: McKenzie GD (ed) Gondwana Six: Stratigraphy, sedimentology, and paleontology. Geophysical monograph series 41. AGU, Washington, D. C.

    Google Scholar 

  • Machalski M (2002) Danian ammonites: a discussion. Bull Geol Soc Denmark 49:49–52

    Article  Google Scholar 

  • Machalski M (2005) Late Maastrichtian and earliest Danian scaphitid ammonites from central Europe: taxonomy, evolution, and extinction. Acta Geol Pol 50:653–696

    Google Scholar 

  • Machalski M, Heinberg C (2005) Evidence for ammonite survival into the Danian (Paleogene) from the Cerithium Limestone at Stevns Klint, Denmark. Bull Geol Soc Denmark 52:97–111

    Article  CAS  Google Scholar 

  • Machalski M, Jagt JMW, Alekseev AS, Jagt-Yazykova E (2012) Terminal Maastrichtian ammonites from Turkmenistan, Central Asia. Acta Paleont Pol 57:729–35

    Article  Google Scholar 

  • Matsumoto T (1973) Late Cretaceous Ammonoidea. In: Hallam A (ed) Atlas of palaeobiogeography. Elsevier, Amsterdam

    Google Scholar 

  • Matsumoto T (1977) Some heteromorph ammonites from the Cretaceous of Hokkaido. Fac. Sci. Kyushu Univ. 23:303–366 (Ser D, Geol)

    Google Scholar 

  • Monnet C (2009) The Cenomanian–Turonian boundary mass exctinction (Late Cretaceous): New insights from ammonoid biodiversity patterns of Europe, Tunisia and the Western Interior (North America). Palaeogeogr Palaeoclim Palaeoecol 282:88–104

    Article  Google Scholar 

  • Monnet C, Bucher H (2007) European ammonoid diversity questions the spreading of anoxia as primary cause for the Cenomanian/Turonian (Late Cretaceous) mass extinction. Swiss J Geosc 100:137–144

    Article  Google Scholar 

  • Monnet C, Bucher H, Escarguel G, Guex J (2003) Cenomanian (early Late Cretaceous) ammonoid faunas of Western Europe. Part II: diversity patterns and the end-Cenomanian anoxic event. Ecl Geol Helv 96:381–398

    Google Scholar 

  • Monnet C, Klug C, De Baets K (2015) Evolutionary patterns of ammonoids: phenotypic trends, convergence, and parallel evolution. This volume

    Google Scholar 

  • Myers CE, MacKenzie RAI, Lieberman BS (2013) Greenhouse biogeography: the relationship of geographic range to invasion and extinction in the Cretaceous Western Interior Seaway. Paleobiol 39:135–148

    Article  Google Scholar 

  • Nagm E, Wilmsen M, Aly MF, Hewaidy A-G (2010) Upper Cenomanian-Turonian (Upper Cretaceous) ammonoids from the western Wadi Araba, Eastern Desert, Egypt. Cret Res 31:473–499

    Article  Google Scholar 

  • Olivero EB (2007) Taphonomy of ammonites from the Santonian-Lower Campanian Santa Marta Formation, Antarctica: Sedimentological controls on vertically embedded ammonites. Palaios 22:586-597. doi:10.2110/palo.2005.p05-118r.

    Google Scholar 

  • Olivero EB (2012) Sedimentary cycles, ammonite diversity and palaeoenvironmental changes in the Upper Cretaceous Marambio Group, Antarctica. Cret Res 34:348–366

    Article  Google Scholar 

  • Olivero EB, Medina FA (2000) Patterns of Late Cretaceous ammonite biogeography in southern high latitudes: the family Kossmaticeratidae in Antarctica. Cret Res 21:269–279

    Article  Google Scholar 

  • Page KN (1996) Mesozoic ammonoids in space and time. In: Landman N, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Topics in geobiology 13, Plenum, New York

    Google Scholar 

  • Remin Z (2010) Upper Coniacian, Santonian, and lowermost Campanian ammonites of the Lipnik-Kije section, central Poland––taxonomy, stratigraphy, and palaeogeographic significance. Cret Res 31:154–180

    Article  Google Scholar 

  • Reyment RA (1956) On the stratigraphy and palaeontology of Nigeria and the Cameroons, British West Africa. Geologiska Föreningens 1 Stockholm Förhandlingar 78:17–96

    Article  Google Scholar 

  • Salazar C, Stinnesbeck W, Quinzio-Sinn LA (2010) Ammonites from the Maastrichtian (Upper Cretaceous) Quiriquina Formation in central Chile. N Jahrb Geol Paläont Abh 257:181–236

    Article  Google Scholar 

  • Seeling J, Bengtson P (2002) Palaeobiogeography of the upper Cenomanian–lower Turonian macroinvertebrates of the Sergipe Basin, northeastern Brazil. Schriftenr Erdwiss Komm Öst Akad Wiss 15:151–168

    Google Scholar 

  • Shigeta Y, Hoffmann R, Izukura M (2010) Systematic position and origin of the Cretaceous ammonoid genus Takahashia. Paleont Res 14:196–201

    Article  Google Scholar 

  • Skelton PW (2003) The mobile palaeogeographical framework. In: Skelton PW (ed) The Cretaceous World. The Open University & Cambridge University Press, Cambridge

    Google Scholar 

  • Stinnesbeck W, Ifrim C, Salazar C (2012) The last Cretaceous ammonites in Latin America. Acta Geol Pol 57:717–728

    Google Scholar 

  • Stinnesbeck W, Ifrim C, Schmidt H, Rindfleisch A, Buchy M-C, Frey E, González González AH, Vega-Vera FJ, Porras-Muzquiz H, Cavin L, Keller G, Smith KT (2005) A new lithographic limestone deposit in the Upper Cretaceous Austin Group at El Rosario, county of Muzquiz, Coahuila, northeastern Mexico. Rev Mex Cie Geol 22:401–418

    Google Scholar 

  • Surlyk F, Nielsen JM (1999) The last ammonite? Bull Geol Soc Denmark 46:115–119

    Article  Google Scholar 

  • Thomel G (1972) Les Acanthoceratidae Cénomaniens des chaines subalpines méridionales. Mém Soc Géol France, Nouv Sér 116:1–204

    Google Scholar 

  • Toshimizu S, Hirano H, Matsumoto T, Takahashi K (2003) Database and species diversity of Japanese ammonoids. J Asian Earth Sci 21:887–893

    Article  Google Scholar 

  • Walaszczyk I, Marcinowski R, Praszkier T, Dembicz K, Bienkowska M (2004) Biogeographical and stratigraphical significance of the latest Turonian and early Coniacian inoceramid/ammonite succession of the Manasoa section on the Onilahy River, south-west Madagascar. Cret Res 25:543–576

    Article  Google Scholar 

  • Ward PD (1990) A review of Maastrichtian ammonite ranges. In: Sharpton VL, Ward PD (eds) Global Catastrophes in Earth History; An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality. GSA Spec Pap 247:519–530

    Google Scholar 

  • Ward PD (2009) Comparing morphological variation in Upper Cretaceous ammonite species co-occurring in a large and small biogeographic realm. GSA Ann Meeting Abs Prog 41:210

    Google Scholar 

  • Ward PD, Kennedy WJ (1993) Maastrichtian ammonites from the Biscay region. J Paleont 67 (suppl. 5):1–58

    Article  Google Scholar 

  • Ward PD, Mallory VS (1977) Taxonomy and evolution of the lytoceratid genus Pseudoxybeloceras and relationship to the genus Solenoceras. J Paleont 51:606–618

    Google Scholar 

  • Ward PD, Mitchell RN, Haggart JW (2008) Co-occurring Campanian/Maastrichtian index fossils in the Western Interior and North Pacific Biotic Provinces require fundamental changes in zonal biostratigraphy for both provinces. In: Joint Meeting of The GSA, Soil Science Society of America, American Society of Agronomy, Crop Science Society of America, Gulf Coast Association of Geological Societies with the Gulf Coast Section of SEPM (eds) 40, Houston, Texas

    Google Scholar 

  • Ward PD, Mitchell RN, Salder P (2010) Late Cretaceous ammonite evolution in the Western Interior as compared to other biogeographic provinces. GSA Ann Meeting—Abs Prog 42:394

    Google Scholar 

  • Westermann GEG (2000a) Biochore classification and nomenclature in paleobiogeography: an attempt to order. Palaeogeogr Palaeoclim Palaeoecol 158:1–13

    Article  Google Scholar 

  • Westermann GEG (2000b) Marine faunal realms of the Mesozoic: review and revision under the new guidelines for biogeographic classification and nomenclature. Palaeogeogr Palaeoclim Palaeoecol 163:49–68

    Article  Google Scholar 

  • Wiedmann J (1988) Ammonoid extinction and the “Cretaceous–Tertiary boundary event”. In: Wiedmann J, Kullmann J (eds) Cephalopods—present and past. Schweizerbart, Stuttgart

    Google Scholar 

  • Wiese F, Voigt S (2002) Late Turonian (Cretaceous) climate cooling in Europe: faunal response and possible causes. Geobios 35:65–77

    Article  Google Scholar 

  • Wright CW (1996) Cretaceous Ammonoidea. In: Kaesler RL (ed) Treatise on Invertebrate Paleontology. 2nd ed. Part L, Mollusca 4, rev. University of Kansas & GSA, Boulder, Lawrence. xx + 362

    Google Scholar 

  • Wright CW, Kennedy J (1984–1996) The Ammonoidea of the Lower Chalk. Monogr Paleont Soc, London, pp. 1–126 (1984); 127–218 (7); 219–294 (91); 295–319 (95); 32–403 (96)

    Google Scholar 

  • Zaborski PMP (1982) Campanian and Maastrichtian sphenodiscid ammonites from southern Nigeria. Bull Brit Mus Nat Hist (Geol) 36:303–332

    Google Scholar 

  • Zinsmeister WJ, Feldmann RM, Woodburne MO, Elliot DH (1989) Latest Cretaceous/earliest Tertiary transition on Seymour Island, Antarctica. J Paleont 63:731–738

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Klug (Zürich), C. Monnet (Lille), and D. Korn (Berlin) for their constructive critique and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Ifrim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ifrim, C., Lehmann, J., Ward, P. (2015). Paleobiogeography of Late Cretaceous Ammonoids. In: Klug, C., Korn, D., De Baets, K., Kruta, I., Mapes, R. (eds) Ammonoid Paleobiology: From macroevolution to paleogeography. Topics in Geobiology, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9633-0_10

Download citation

Publish with us

Policies and ethics