Skip to main content

Parasites of Ammonoids

  • Chapter
  • First Online:
Ammonoid Paleobiology: From anatomy to ecology

Part of the book series: Topics in Geobiology ((TGBI,volume 43))

Abstract

Extant cephalopods are commonly infested by parasites making it plausible that ammonoids also had parasites. We review the fossil evidence of parasitic infestations in ammonoids, which, due to low preservation potential of soft-tissues in ammonoids and parasites, are mainly recorded as shell pathologies on the external shell interpreted to be caused by parasites. Extant nautilids are of little help to interpret these structures as they only harbor parasitic copepods. Pathologies analogous to those found in ammonoids that are caused by parasites are common in extant bivalves and gastropods. The position of these features might reveal their parasitic nature. The restriction of these structures to certain ammonoid lineages suggests both the influence of phylogeny and the potential role of ecology (feeding, mode of life) on infestation risks. Other long-term associations with detriment to ammonoids such as epizoa and bioeroders as well as their possible confusion with parasitism are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barord GJ, Ju C, Basil JA (2012) First report of a successful treatment of a mucodegenerative disease in the chambered nautilus (Nautilus pompilius). J Zoo Wildl Med 43:636–639

    Google Scholar 

  • Bayer U (1970) Anomalien bei Ammoniten des Aaleniums und Bajociums und ihre Beziehung zur Lebensweise. Neues Jahrb Geol Paläontol Abh 135:19–41

    Google Scholar 

  • Becker RT, House MR (1994) International devonian goniatite zonation, Emsian to Givetian, with new records from Morocco. Cour Forschungsinst Senckenb 169:79–135

    Google Scholar 

  • Beuck L, Correa M, Freiwald A (2008) Biogeographical distribution of Hyrrokkin (Rosalinidae, Foraminifera) and its host-specific morphological and textural trace variability. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin

    Google Scholar 

  • Binder H (2002) Fossile Perlen aus dem Karpatium des Korneuburger Beckens (Österreich, Untermiozän). Beiträge zur Paläontologie 27:259–271

    Google Scholar 

  • Bockwinkel J, Becker RT, Ebbighausen V (2009) Upper Givetian ammonoids from Dar Kaoua (Tafilalt, SE Anti-Atlas, Morocco). Berl Paläobiol Abh 10:61–128

    Google Scholar 

  • Bockwinkel J, Becker RT, Ebbighausen† V (2013) Late Givetian ammonoids from Hassi Nebech (Tafilalt Basin, Anti-Atlas, southern Morocco). Foss Rec 16:5–65

    Google Scholar 

  • Boettger CR (1953a) Größenwachstum und Geschlechtsreife bei Schnecken und pathologischer Riesenwuchs als Folge einer gestörten Wechselwirkung beider Faktoren. Zoologischer Anzeiger (Suppl 17):468–487

    Google Scholar 

  • Boettger CR (1953b) Riesenwuchs der Landschnecke Zebrina (Zebrina) detrita (Müller) als Folge parasitärer Kastration. Archiv für Molluskenkunde 82:151–152

    Google Scholar 

  • Boucot AJ, Poinar GO Jr (2010) Fossil behavior compendium. CRC Press, Boca Raton

    Google Scholar 

  • Brooks DR, McLennan DA (1993) Parascript: parasites and the language of evolution. Smithsonian Institution Press, Washington

    Google Scholar 

  • Bucher H, Landman NH, Klofak SM, Guex J (1996) Mode and rate of growth in ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York

    Google Scholar 

  • Busse E (1976). Eine Napfschnecke (Gastropoda, Cyclobranchia, Patellaceae) im Oberen Muschelkalk (Mittlere Ceratitenschichten/Ladin) Niederhessens. Geol Jahrb Hessen 104:5–7

    Google Scholar 

  • Carlson BA (1987) Collection and aquarium maintenance of nautilus. In: Saunders WB, Landman NH (eds) Nautilus. Springer, Dordrecht

    Google Scholar 

  • Castellanos-Martínez S, Gestal C (2013) Pathogens and immune response of cephalopods. J Exp Mar Biol Ecol 447:14–22

    Google Scholar 

  • Checa AG, Okamoto T, Keupp H (2002) Abnormalities as natural experiments: a morphogenetic model for coiling regulation in planispiral ammonites. Paleobiology 28:127–138

    Google Scholar 

  • Chlupáč I, Turek V (1983) Devonian goniatites from the Barrandian area. Rozpr Ustred Ust Geol 46:1–159

    Google Scholar 

  • Combes C (2001) Parasitism: the ecology and evolution of intimate interactions. University of Chicago Press, Chicago

    Google Scholar 

  • Conway Morris S (1981) Parasites and the fossil record. Parasitology 83:489–509

    Google Scholar 

  • Conway Morris S (1990) Parasitism. In: Briggs DEG, Crowther PR (eds) Palaeobiology: a synthesis. Blackwell Science, Oxford

    Google Scholar 

  • Cuvier G (1829) Le règne animal distribué d’après son organisation. Tome I. Imprimerie D’Hippolyte Tilliard, Paris

    Google Scholar 

  • Cuvier G (1830) Considérations sur les mollusques, et en particulier sur les céphalopodes. Ann Sci Nat 19:241–259.

    Google Scholar 

  • Davis RA, Mapes RH (1999) Pits in internal molds of cephalopods. Ber Geol BA 46:31

    Google Scholar 

  • Davis RA, Landman NH, Dommergues J-L, Marchand D, Bucher H (1996) Mature Modifications and dimorphism in ammonoid cephalopods. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York

    Google Scholar 

  • Davis RA, Klofak SM, Landman NH (1999) Epizoa on externally shelled cephalopods. In: Rozanov AY, Shevyrev AA (eds) Fossil cephalopods: recent advances in their study. Russian Academy of Sciences Paleontological Institute, Moscow

    Google Scholar 

  • De Baets K, Klug C, Korn D (2011) Devonian pearls and ammonoid-endoparasite co-evolution. Acta Palaeontol Pol 56:159–180

    Google Scholar 

  • De Baets K, Klug C, Korn D, Landman NH (2012) Early evolutionary trends in ammonoid embryonic development. Evolution 66:1788–1806

    Google Scholar 

  • De Baets K, Goolaerts S, Jansen U, Rietbergen T, Klug C (2013a) The first record of Early Devonian ammonoids from Belgium and their stratigraphic significance. Geol Belg 16:148–156

    Google Scholar 

  • De Baets K, Klug C, Korn D, Bartels C, Poschmann M (2013b) Emsian Ammonoidea and the age of the Hunsrück Slate (Rhenish Mountains, Western Germany). Palaeontogr A 299:1–113

    Google Scholar 

  • De Baets K, Bert D, Hoffmann R, Monnet C ,Yacobucci MM, Klug C (2015) Ammonoid intraspecific variability. In: Klug C, Korn D, De Baets K, Kruta I, Mapes RH (eds) Ammonoid Paleobiology: From anatomy to ecology. Springer, Dordrecht

    Google Scholar 

  • Della Chiaje S (1825) Memorie sulla storia e notomia degli animali senza vertebre del regno di Napoli, 2. Napoli. Stamperia Della Societá Tipografica 1–4:185–444

    Google Scholar 

  • Dentzien-Dias PC, Poinar G Jr, de Figueiredo AEQ, Pacheco ACL, Horn BLD, Schultz CL (2013) Tapeworm Eggs in a 270 Million-Year-Old Shark Coprolite. PlosOne 8:1–4, DOI: 10.1371/journal.pone.0055007

    Google Scholar 

  • Doguzhaeva LA, Michailova IA, Kabanov GK (1990) Irregular forms of Deshayesites (Ancycloceratina) from the Volga Region near Uljanowsk. Trans Paleontol Inst 243:120–127 [in Russian]

    Google Scholar 

  • Dullo C (1981) Zur Erhaltung und Mikrostruktur der Ammonitenschalen aus Unterstürmig (Ofr.). Geol Nordost-Bayern 31:75–83

    Google Scholar 

  • Ebbighausen V, Becker RT, Bockwinkel J (2011) Emsian and Eifelian ammonoids from Oufrane, eastern Dra Valley (Anti-Atlas, Morocco)—taxonomy, stratigraphy and correlation. Neues Jahrb Geol Paläontol Abh 259:313–379

    Google Scholar 

  • Engel MS (1894) Über kranke Ammonitenformen im Schwäbischen Jura. Nova Acta Leopold 61:327–384

    Google Scholar 

  • Fernández-López SR (1987) Necrocinesis y colonización posmortal en Bajocisphinctes (Ammonoidea) de la Cuenca Ibérica: implicaciones paleoecológicas y paleobatimétricas. Bol Real Soc Esp His Nat Secc Geol 82:151–184

    Google Scholar 

  • Geczy B (1965) Pathologische jurassische Ammoniten aus dem Bakony-Gebirge. Ann Univ Sci Budap Rolando Eötvös Nominatae Sect Geol 9:31–37

    Google Scholar 

  • Gerasimov PA (1955) Guide-fossils of Mesozoic of the central regions of the European part of USSR. Part II. Echinodermata, Crustaceans, Vermes, Bryozoans and corals from the Jurassic deposits. Gosgeolyekhizdat, Moscow [in Russian]

    Google Scholar 

  • Glaub I (1994) Mikrobohrspuren in ausgewählten Ablagerungsräumen des europäischen Jura und der Unterkreide (Klassifikation und Palökologie). Cour Forsch Senckenberg 174:1–324

    Google Scholar 

  • González AF, Pascual S, Gestal C, Abollo E, Guerra A (2003) What makes a cephalopod a suitable host for parasite? The case of Galician waters. Fish Res 60:177–183. doi:10.1016/s0165–7836(02)00059–0

    Google Scholar 

  • Götting K-J (1974) Malakozoologie. Grundriss der Weichtierkunde. Fischer, Stuttgart

    Google Scholar 

  • Götting K-J (1979) Durch Parasiten induzierte Perlbildung bei Mytilus edulis L. (Bivalvia). Malacologia 18:563–567

    Google Scholar 

  • Hanlon RT, Forsythe JW (1990) Diseases caused by microorganisms In: Kinne O (ed) Diseases of Marine Animals. Vol. III. Biologische Anstalt Helgoland, Hamburg

    Google Scholar 

  • Hauschke N, Schöllmann L, Keupp H (2011) Oriented attachment of a stalked cirripede on an orthoconic heteromorph ammonite—implications for the swimming position of the latter. Neues Jahrb Geol Paläontol Abh 262:199–212

    Google Scholar 

  • Haven N (1972) The ecology and behavior of Nautilus pompilius in the Philippines. Veliger 15:75–81

    Google Scholar 

  • Heller F (1958) Gehäusemißbildungen bei Amaltheiden. Ein neuer Fund aus dem fränkischen Jura. Geol Blätter für Nordost-Bayern und angrenzende Gebiete 8:66–71

    Google Scholar 

  • Heller F (1964) Neue Fälle von Gehäuse-Mißbildungen bei Amaltheiden. Paläontol Z 38:136–141

    Google Scholar 

  • Hengsbach R (1976) Über Sutur-Asymmetrie bei Cymbites laevigatus (Ammonoidea; Jura). Senckenb Lethaea 56:463–468

    Google Scholar 

  • Hengsbach R (1977a) Cheiloceraten (Ammon., Devon) mit asymmetrischen Phragmocon. Sitzungsber Ges Natur Freunde Berlin (N F) 17:69–72

    Google Scholar 

  • Hengsbach R (1977b) Über die Sutur-Asymmetrie einiger Psiloceraten. Sitzungsber Ges Natur Freunde Berlin (N F) 17:59–67

    Google Scholar 

  • Hengsbach R (1977c) Zur Sutur-Asymmetrie bei Platylenticeras. Zool Beitr 23:459–468

    Google Scholar 

  • Hengsbach R (1978) Zur Sutur-Asymmetrie bei Anahoplites. Senck leth 59:377–385

    Google Scholar 

  • Hengsbach R (1979a) Zur kenntnis der Asymmetrie der Ammoniten-Lobenlinie. Zool Beitr 25:107–162

    Google Scholar 

  • Hengsbach R (1979b) Weitere Anomalien an Amaltheen-Gehäusen (Ammonoidea; Lias). Senck leth 60:243–251

    Google Scholar 

  • Hengsbach R (1980) Über die Sutur-Asymmetrie bei Hecticoceras (Ammonoidea; Jura). Senck leth 60:463–473

    Google Scholar 

  • Hengsbach R (1986a) Zur Kenntnis der Asymmetrie der Sutur-Asymmetrie bei Ammoniten. Senck leth 67:119–149

    Google Scholar 

  • Hengsbach R (1986b) Ontogenetisches Auftreten und Entwicklung der Sutur-Assymmetrie bei einigen Psilocerataceae (Ammonoidea; Jura). Senck leth 67:323–330

    Google Scholar 

  • Hengsbach R (1990) Studien zur Paläopathologie der Invertebraten. 1: Die Paläoparasitologie, eine Arbeitsrichtung der Paläobiolog. Senck leth 70:439–461

    Google Scholar 

  • Hengsbach R (1991a) Studien zur Paläopathologie der Invertebraten III: Parasitismus bei Ammoniten. Paläontol Z 65:127–139

    Google Scholar 

  • Hengsbach R (1991b) Studien zur Paläopathologie der Invertebraten II: Die Symmetropathie—ein Beitrag zur Erforschung sogenannter Anomalien. Senck leth 71:339–366

    Google Scholar 

  • Hengsbach R (1996) Ammonoid pathology. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York

    Google Scholar 

  • Ho JS (1980) Anchicaligus nautili (Willey), a caligid copepod parasitic on Nautilus in Palau, with discussion of Caligulina Heegaard, 1972. Publ Seto Mar Biol Lab 25:157–165

    Google Scholar 

  • Hochberg FG (1983) The parasites of cephalopods: a review. Mem Natl Mus Vic 44:109–145

    Google Scholar 

  • Hochberg FG (1989) Les parasites. In: Mangold K (ed) Traité de Zoologie, Tome V (Cephalopodes), Fascicule 4. Masson, Paris

    Google Scholar 

  • Hochberg FG (1990) Diseases of mollusca: cephalopoda. In: Kinne O (ed) Diseases of marine animals, Vol. III. Biologische Anstalt Helgoland, Hamburg

    Google Scholar 

  • Hölder H (1956) Über Anomalien an jurassischen Ammoniten. Paläontol Z 30:95–107

    Google Scholar 

  • Hölder H (1970) Anomalien an Molluskenschalen, insbesondere Ammoniten, und deren Ursachen. Paläontol Z 44:182–195

    Google Scholar 

  • Hook JE, Golubic S (1988) Mussel periostracum from deep-sea redox communities as a microbial habitat: the scalloping periostracum borer. Mar Ecol 9:347–364

    Google Scholar 

  • Hook JE, Golubic S (1992) Mussel periostracum from deep-sea redox communities as a microbial habitat: 3. Secondary inhabitants. Mar Ecol 13:119–131

    Google Scholar 

  • House MR (1960) Abnormal growths in some Devonian goniatites. Palaeontology 3:129–136

    Google Scholar 

  • Hüne L, Hüne P (2006). Des phénomènes paléopathologiques chez une faune d’ammonites du Callovien superieur de Bénerville-sur-Mer (Calvados, France). L’ècho des falaises 10: 33–37

    Google Scholar 

  • Huntley JW (2007) Towards establishing a modern baseline for paleopathology: trace-producing parasites in a bivalve host. J Shellfish Res 26:253–259

    Google Scholar 

  • Ituarte CF, Cremonte F, Deferrari G (2001) Mantle-shell complex reactions elicited by digenean metacercariae in Gaimardia trapesina (Bivalvia: Gaimardiidae) from the Southwestern Atlantic Ocean and Magellan Strait. Dis Aquat Org 48:47–56

    Google Scholar 

  • Ituarte C, Cremonte F, Zelaya DG (2005) Parasite-mediated shell alterations in Recent and Holocene sub-antarctic bivalves: the parasite as modeler of host reaction. Invertebr Biol 124:220–229. doi: 10.1111/j.1744–7410.2005.00021.x

    Google Scholar 

  • Ivanov AN (1971) Problems of the periodization of ontogeny in ammonites. Yarosl Ped Inst Uch Zap Geol i Paleont 87:76–119 [in Russian]

    Google Scholar 

  • Ivanov AN (1975) Late ontogeny in ammonites and its characteristics in micro-, macro- and megaconches. Yarosl Ped Inst. Sb Nauchn Trudy 142:5–57 [in Russian]

    Google Scholar 

  • Jacobs DK, Landman NH (1993) Nautilus-a poor model for the function and behavior of ammonoids? Lethaia 26:101–111

    Google Scholar 

  • Kemper E (1961) Die Ammonitengattung Platylenticeras (= Garnieria). Beihefte zum Geologischen Jahrbuch 47:1–195

    Google Scholar 

  • Keupp H (1976) Neue Beispiele für den Regenerationsmechanismus bei verletzten und kranken Ammoniten. Paläontol Z 50:70–77

    Google Scholar 

  • Keupp H (1977) Paläopathologische Normen bei Amaltheiden (Ammonoidea) des Fränkischen Lias. Jahrb Coburg Landes-Stiftung 1977:263–280

    Google Scholar 

  • Keupp H (1979) Nabelkanten-präferenz der forma verticata Hölder 1956 bei Dactylioceraten (ammonoidea, Toarcien). Paläontol Z 53:214–219

    Google Scholar 

  • Keupp H (1984) Pathologische Ammoniten, Kuriositäten oder paläobiologische Dokumente? (Teil 1). Fossilien 1984: 258–262

    Google Scholar 

  • Keupp H (1986) Perlen (Schalenkonkretionen) bei Dactylioceraten aus dem fränkischen Lias. Natur und Mensch 1986:97–102

    Google Scholar 

  • Keupp H (1994) Volumenvermindernde Gehäuse-Anomalien bei Jura-Ammoniten. Fossilien 1994:38–44

    Google Scholar 

  • Keupp H (1995) Volumenvergrößernde Anomalien bei Jura-Ammoniten. Fossilien 1995:54–59

    Google Scholar 

  • Keupp H (1996) Paläopathologische Analyse einer Ammoniten-Vergesellschaftung aus dem Ober-Jura Westsibiriens. Fossilien 1996:45–54

    Google Scholar 

  • Keupp H (1997) Paläopathologische Analyse einer „Population“ von Dactylioceras athleticum (Simpson) aus dem Unter-Toarcium von Schlaifhausen/Oberfranken. Berl Geowiss Abh E 25:243–267

    Google Scholar 

  • Keupp H (1998) Mundsaumverletzungen bei Pleuroceras (Ammonoidea). Fossilien 1998:37–42

    Google Scholar 

  • Keupp H (2000) Ammoniten—Paläobiologische Erfolgsspiralen. Thorbecke, Stuttgart

    Google Scholar 

  • Keupp H (2006) Sublethal punctures in body chambers of Mesozoic ammonites (forma aegra fenestra n. f.), a tool to interpret synecological relationships, particularly predator-prey interactions. Paläontol Z 80:112–123

    Google Scholar 

  • Keupp H (2012) Atlas zur Paläopathologie der Cephalopoden. Berl Paläobiol Abh 12:1–390

    Google Scholar 

  • Keupp H, Hoffmann R (2015) Ammonoid paleopathology. In: Klug C, Korn D, De Baets K, Kruta I, Mapes RH (eds) Ammonoid Paleobiology: From anatomy to ecology. Springer, Dordrecht

    Google Scholar 

  • Keupp H, Ilg A (1992) Paläopathologie der Ammoniten fauna aus dem Obercallovium der Normandie und ihre palökologische Interpretation. Berl Geowiss Abh E 3:171–189

    Google Scholar 

  • Keupp H, Riedel F (1995) Nautilus pompilius in captivity: a case study of abnormal shell growth. Berl Geowiss Abh E 16 2:663–681

    Google Scholar 

  • Keupp H, Röper M, Seilacher A (1999) Paläobiologische Aspekte von syn vivo-besiedelten Ammonoideen im Plattenkalk des Ober-Kimmeridgiums von Brunn in Ostbayern. Berl Geowiss Abh E 30:121–145

    Google Scholar 

  • Kieslinger A (1926) Untersuchungen an triadischen Nautiloideen. Paläontol Z 7:101–122

    Google Scholar 

  • Kinne O (1980) Diseases of marine animals: general aspects. In Kinne O (ed) Diseases of marine animals, volume I: general aspects, protozoa to gastropoda. Biologische Anstalt Helgoland, Hamburg

    Google Scholar 

  • Kirchner H (1927) Perlbildung bei einem Ceratiten. Zentra Miner Geol Paläont Abt B Geol Paläont 4:148–150

    Google Scholar 

  • Klug C (2001) Early Emsian ammonoids from the eastern Anti-Atlas (Morocco) and their succession. Paläontol Z 74:479–515

    Google Scholar 

  • Klug C (2002a) Quantitative stratigraphy and taxonomy of late Emsian and Eifelian ammonoids of the eastern Anti-Atlas (Morocco). Cour Forschungsinst Senckenb 238:1–109

    Google Scholar 

  • Klug C (2002b) Conch parameters and ecology of Emsian and Eifelian ammonoids from the Tafilalt (Morocco) and their relation to global events. Ber Geol BA 57:523–538

    Google Scholar 

  • Klug C (2007) Sublethal injuries in Early Devonian cephalopod shells from Morocco. Acta Palaeontol Pol 52:749–759

    Google Scholar 

  • Klug C, Korn D (2001) Epizoa and post-mortem epicoles on cephalopod shells—examples from the Devonian and Carboniferous of Morocco. Berl Geowiss Abh E 36:145–155

    Google Scholar 

  • Klug C, Lehmann J (2015) Soft part anatomy of ammonoids: reconstructing the animal based on exceptionally preserved specimens and actualistic comparisons. In: Klug C, Korn D, De Baets K, Kruta I, Mapes RH (eds) Ammonoid Paleobiology: From anatomy to ecology. Springer, Dordrecht

    Google Scholar 

  • Klug C, De Baets K, Kröger B, Bell MA, Korn D, Payne JL (2015) Normal giants? Temporal and latitudinal shifts of Palaeozoic marine invertebrate gigantism and global change. Lethaia 48:267–288. DOI: 10.1111/let.12104

    Google Scholar 

  • Klug C, Kröger B, Korn D, Rucklin M, Schemm-Gregory M, De Baets K, Mapes RH (2008) Ecological change during the early Emsian (Devonian) in the Tafilalt (Morocco), the origin of the Ammonoidea, and the first African pyrgocystid edrioasteroids, machaerids and phyllocarids. Palaeontogr A 283:83–176

    Google Scholar 

  • Klug C, Riegraf W, Lehmann J (2012) Soft–part preservation in heteromorph ammonites from the Cenomanian–Turonian Boundary Event (OAE 2) in north–west Germany. Palaeontology 55:1307–1331

    Google Scholar 

  • Korn D, Klug C (2002) Ammoneae Devonicae. In: Riegraf W (ed) Fossilium Catalogus 1: Animalia, 138. Backhuys, Leiden

    Google Scholar 

  • Korn D, Klug C, Mapes RH (2005a) The lazarus ammonoid family Goniatitidae, the tetrangularly coiled Entogonitidae, and Mississippian biogeography. J Paleontol 79:356–365

    Google Scholar 

  • Korn D, Niedzwiedzki R, Posieczek JB (2005b) Age, distribution, and phylogeny of the peculiar late Devonian ammonoid Soliclymenia. Act Geol Pol 55:99–108

    Google Scholar 

  • Kraft S, Korn D, Klug C (2008) Patterns of ontogenetic septal spacing in Carboniferous ammonoids. N Jahrb Geol Paläont Abh 250:31–44

    Google Scholar 

  • Kröger B (2000) Schalenverletzungen an jurassischen Ammoniten—ihre paläobiologische und paläoökologische Aussagefähigkeit. Berl Geowiss Abh E 33:1–97

    Google Scholar 

  • Kröger B, Vinther J, Fuchs D (2011) Cephalopod origin and evolution: a congruent picture emerging from fossils, development and molecules. Bioessays 33:602–613

    Google Scholar 

  • Kruta I, Landman NH (2008) Injuries on Nautilus jaws: implications for the function of ammonite aptychi. Veliger 50:241–247

    Google Scholar 

  • Lafferty KD, Kuris AM (2009) Parasitic castration: the evolution and ecology of body snatchers. Trends Parasitol 25:564–572

    Google Scholar 

  • Lange W (1941) Die Ammonitenfauna der Psiloceras-Stufe Norddeutschlands. Palaeontogr A 93:1–186

    Google Scholar 

  • Lauckner G (1983) Diseases of mollusca: Bivalvia. In: Kinne O (ed) Diseases of marine animals, vol II. Biologische Anstalt Helgoland, Hamburg

    Google Scholar 

  • Landman NH, Waage KM (1986) Shell abnormalities in scaphitid ammonites. Lethaia 19:211–224

    Google Scholar 

  • Landman NH, Mikkelsen PM, Bieler R Bronson B (2001) Pearls: a natural history. Abrams, New York.

    Google Scholar 

  • Landman NH, Kennedy WJ, Cobban WA, Larson NL (2010) Scaphites of the “Nodosus Group” from the Upper Cretaceous (Campanian) of the Western Interior of North America. Bull Am Mus Nat Hist:1–242

    Google Scholar 

  • Larson N (2007) Deformities in the Late Callovian (late Middle Jurassic) ammonite Fauna from Saratov, Russia. In: Landman NH, Davis RA, Mapes RH (eds) Cephalopods—Present and Past: new insights and fresh perspectives. Springer, Netherlands

    Google Scholar 

  • Lehmann U (1975) Über Biologie und Gehäusebau bei Dactylioceras (Ammonoidea) aufgrund einer Fraktur-Analyse. Mitt Geol-Paläontol Inst Univ Hamburg 44:195–206

    Google Scholar 

  • Lehmann U (1990) Ammonoideen: leben zwischen Skylla and Charybdis. Enke, Stuttgart

    Google Scholar 

  • Liljedahl L (1985) Ecological aspects of a silicified bivalve Fauna from the Silurian of Gotland. Lethaia 18:53–66

    Google Scholar 

  • Littlewood DTJ (2006) The evolution of parasitism in flatworms. In: Maule AG, Marks NJ (eds) Parasitic flatworms: molecular biology, biochemistry, immunology and physiology. CABI, Wallingford

    Google Scholar 

  • Littlewood DTJ, Donovan SK (2003) Fossil parasites: a case of identity. Geol Today 19:136–142

    Google Scholar 

  • Manda S, Turek V (2009) Minute Silurian oncocerid nautiloids with unusual colour patterns. Acta Palaeontol Pol 54:503–512

    Google Scholar 

  • Manger WL, Meeks LK, Stephen DA (1999) Pathologic gigantism in middle Carboniferous cephalopods, Southern Midcontinent, United States. In: Olóriz F, Rodríguez-Tovar FJ (eds) Advancing research on living and fossil cephalopods. Springer, Dordrecht

    Google Scholar 

  • Maubeuge PL (1949) Sur la nature des “conelles” (Quenstedt). Bull Soc Sci Nancy 1:1–3.

    Google Scholar 

  • Meischner D (1968) Perniciöse Epökie von Placunopsis auf Ceratites. Lethaia 1:156–174

    Google Scholar 

  • Miller AI (1938) Devonian ammonoids of America. GSA Spec Pap 14:1–294

    Google Scholar 

  • Mironenko AA 2012. Traces of lifetime damage on the shells of Upper Jurassic (upper Volgian) Kachpurites (Craspeditidae, Ammonoidea). In: Leonova TB, Barskov IS, Mitta VV (eds) Modern problems of studying of cephalopod molluscs: morphology, taxonomy, evolution, ecology, biostratigraphy. Paleont Inst Russian Acad Sci, Moscow [in Russian]

    Google Scholar 

  • Miura O, Kuris AM, Torchin ME, Hechinger RF, Chiba S (2006) Parasites alter host phenotype and may create a new ecological niche for snail hosts. Proc R Soc Lond B 273:1323–1328

    Google Scholar 

  • Morton N (1983) Pathologically deformed Graphoceras (Ammonitina) from the Jurassic of Skye, Scotland. Palaeontology 26:443–453

    Google Scholar 

  • Opitz R (1932) Bilder aus der Erdgeschichte des Nahe-Hunsrück-Landes Birkenfeld. Enke, Birkenfeld

    Google Scholar 

  • Pascual S, Gestal C, Estévez JM, Rodríguez H, Soto M, Abollo E, Arias C (1996) Parasites in commercially-exploited cephalopods (Mollusca, Cephalopoda) in Spain: an updated perspective. Aquaculture 142:1–10

    Google Scholar 

  • Pascual S, Gonzáez A, Guerra A (2007) Parasites and cephalopod fisheries uncertainty: towards a waterfall understanding. Rev Fish Biol Fish 17:139–144

    Google Scholar 

  • Paul CRC, Simms MJ (2012) Epifauna on ammonites from the Lower Jurassic of the Severn basin, southern England, and their palaeoenvironmental and taphonomic significance. Proc Geol Assoc 123:508–519

    Google Scholar 

  • Ploch I (2007) Intraspecific variability and problematic dimorphism in the Early Cretaceous (Valanginian) ammonite Saynoceras verrucosum (d’Orbigny, 1841). Act Geologica Sin 81:877–882

    Google Scholar 

  • Poulin R, Morand S (2000) The diversity of parasites. The Quart Rev Biol 75:277–293. doi:10.2307/2665190

    Google Scholar 

  • Quenstedt FA (1884) Petrefaktenkunde Deutschlands, Erste Abtheilung, B, 1. Band Fues´s, Leipzig

    Google Scholar 

  • Rakociński M. (2011) Sclerobionts on Upper Famennian cephalopods from the Holy cross mountains, Poland. Palaeobiol Palaeoenviron 91:63–73, doi 10.1007/s12549–010-0045-x

    Google Scholar 

  • Rakociński M (2012) The youngest Devonian record of “Housean pits” in ammonoids. Geol Q 56:387–390

    Google Scholar 

  • Raup DM (1991) The future of analytical paleobiology. Short Course Paleontol 4:207–216

    Google Scholar 

  • Rein S (1989) Über das Regenerationsvermögen der germanischen Ceratiten (Ammonoidea) des Oberen Muschelkalks (Mitteltrias). Veröff Naturhistorischen Mus Schleus 4:47–54

    Google Scholar 

  • Rein S (1994) Sekundärschalenbildungen (forma conclusa) bei germanischen Ceratiten. Fossilien 1994:372–376

    Google Scholar 

  • Rieber H (1963) Ein Cardioceras (Ammonoidea) mit asymmetrischer Lage von Phragmokon und Kiel. Neues Jahrb Geol Paläontol Mh 1963:289–294

    Google Scholar 

  • Ritterbush KA, Hoffmann R, Lukeneder A, De Baets K (2014) Pelagic palaeoecology: the importance of recent constraints on ammonoid palaeobiology and life history. J Zool 292:229–241

    Google Scholar 

  • Rocha F, Guerra A, Gonzalez AF (2001) A review of reproductive strategies in cephalopods. Biol Rev 76:291–304

    Google Scholar 

  • Rohde K (2005) Definitions, and adaptations to a parasitic way of life. In: Rohde K (ed) Marine parasitology. CSIRO, Oxon

    Google Scholar 

  • Ruiz GM, Lindberg DR (1989) A fossil record for trematodes: extent and potential uses. Lethaia 22:431–438

    Google Scholar 

  • Schindewolf OH (1934) Über Epöken auf Cephalopoden-Gehäusen. Paläontol Z 16:15–31

    Google Scholar 

  • Schindewolf OH (1962) Parasitäre Thallophyten in Ammoniten-Schalen. Paläontol Z 36:206–215

    Google Scholar 

  • Schindewolf OH (1963) Pilze in oberjurassischen Ammoniten-Schalen. N Jahrb Geol Paläont Abh 118:177–181

    Google Scholar 

  • Schweigert G (2009) First three-dimensionally preserved in situ record of an aptychophoran ammonite jaw apparatus in the Jurassic and discussion of the function of aptychi. Berl Paläobiol Abh 10:321–330

    Google Scholar 

  • Schweigert G, Dietl G (2001) Die Kieferelemente von Physodoceras (Ammonitina, Aspidoceratidae) im Nusplinger Plattenkalk (Oberjura, Schwäbische Alb). Berl Geowiss Abh E 36:131–143

    Google Scholar 

  • Seilacher A (1960) Epizoans as a key to ammonoid ecology. J Paleont 34:189–193

    Google Scholar 

  • Seilacher A (1982) Ammonite shells as habitats—floats or benthic islands? (Abstract). In: Einsele G, Seilacher A (eds) Cyclic and event stratification. Springer, Berlin

    Google Scholar 

  • Seltzer VB (2001) About anomal shells from the callovian ammonites. Transactions of the scientific research geological institute of the N. G. Chernyshevskii Saratov State Univ 8:29–45

    Google Scholar 

  • Seltzer VB (2009) Anomalous phragmocones of the Late Callovian Cardioceratidae (Ammonoidea) In: Leonova TB, Barskov IS, Mitta VV (eds) Contributions to current cephalopod research: morphology, systematics, evolution, ecology and biostratigraphy. PIN RAS, Moscow

    Google Scholar 

  • Seuss B, Wisshak M, Mapes RH, Landman NH (2015) Syn-Vivo Bioerosion of Nautilus by Endo- and Epilithic Foraminiferans (New Caledonia and Vanuatu). PLoS ONE 10:e0125558

    Google Scholar 

  • Stridsberg S, Turek V (1997) A revision of the Silurian nautiloid genus Ophioceras Barrande. GFF 119:21–36

    Google Scholar 

  • Sousa WP (1983) Host life history and the effect of parasitic castration on growth: a field study of Cerithidea californica Haldeman (Gastropoda: Prosobranchia) and its trematode parasites. J Exp Mar Biol Ecol 73:273–296

    Google Scholar 

  • Sorensen RE, Minchella DJ (2001) Snail-trematode life history interactions: past trends and future directions. Parasitology 123(7):S3–S18

    Google Scholar 

  • Sparks AK (1972) Invertebrate Pathology: Non-communicable Diseases. Academic Press, New York

    Google Scholar 

  • Tasnádi-Kubacska A (1962) Paläopathologie: Pathologie der Vorzeitlichen Tiere: Vol. 1. Fischer, Jena

    Google Scholar 

  • Turek V, Manda S (2010) Variability of colour pattern and shell abnormalities in Silurian nautiloid Peismoceras Hyatt, 1884. J Natl Mus (Prague), Nat Hist Ser 179:171–178

    Google Scholar 

  • Upeniece I (2001) The unique fossil assemblage from the Lode quarry (Upper Devonian, Latvia). Foss Rec 4:101–119

    Google Scholar 

  • Upeniece I (2011) Palaeoecology and juvenile Individuals of the Devonian placoderm and acanthodian fishes from Lode Site, Latvia. University of Latvia, Riga

    Google Scholar 

  • Wani R (2007) How to recognize in situ fossil cephalopods: evidence from experiments with modern Nautilus. Lethaia 40:305–311

    Google Scholar 

  • Ward PD (1987) The natural history of Nautilus. Allen and Unwin, Winchester

    Google Scholar 

  • Weitschat W (1986) Phosphatisierte Ammonoideen aus der Mittleren Trias von Central-Spitzbergen. Mitt Geol-Paläont Inst Univ Hamburg 61:249–279

    Google Scholar 

  • Wetzel W (1954) Untersuchung eines großen Jurafindlings von besonderem sedimentologischen und paläobiologischen Interesse. Palaeontogr A 105:133–165

    Google Scholar 

  • Wetzel W (1964) Schalen-Parasitismus bei Ammoniten (aufgrund schleswig-holsteinischer Funde). Meyniana 14:66–69

    Google Scholar 

  • Willey A (1897) Zoological observations in the South Pacific. Q J Microscopical Sci (N. S.) 39:219–231

    Google Scholar 

  • Wisshak M, Tapanila L (2008) Current developments in Bioerosion. In: Freiwald A (ed) Erlangen earth conference series. Springer, Heidelberg

    Google Scholar 

  • Yacobucci MM, Manship LL (2011) Ammonoid septal formation and suture asymmetry explored with a geographic information systems approach. Palaeontol Electron 14(1):3A:17p

    Google Scholar 

  • Zapalski MK (2011) Is absence of proof a proof of absence? Comments on commensalism. Palaeogeogr Palaeoclimatol Palaeoecol 302:484–488

    Google Scholar 

  • Zatoń M (2010) Sublethal injuries in middle Jurassic ammonite shells from Poland. Geobios 43:365–375.

    Google Scholar 

  • Ziegler B (1958) Monographie der Ammonitengattung Glochiceras im epikontintalen Weißjura Mitteleuropas. Palaeontogr A 110:93–164

    Google Scholar 

Download references

Acknowledgements

Some of the materials and studies used for this contribution resulted from research which was carried out in the research projects with the numbers 200021–113956⁄ 1, 200020–25029, and 200020–132870 funded by the Swiss National Science Foundation SNF. We would like to thank: Matthias López Correa (Geozentrum Nordbayern, Erlangen), Barbara Seuß (Geozentrum Nordbayern, Erlangen) and Max Wisshak (Senckenberg am Meer, Wilhelmshaven) for discussions on bioerosion in extant molluscs; Carlo Romano (Palaontologisches Institut und Museum, Zürich) for helping with obtaining literature; Aleksandr Mironenko (Moscow) and Mikhail Rogov (Geological Institute of Russian Academy of Sciences, Moscow) for help with Russian literature. We thank the reviewers Arnaud Brayard (Université de Bourgogne, Dijon), Isabella Kruta (AMNH, New York) and Joshua Slattery (University of South Florida) for their constructive comments and suggestions. John Huntley (University of Missouri) proofread an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth De Baets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Baets, K., Keupp, H., Klug, C. (2015). Parasites of Ammonoids. In: Klug, C., Korn, D., De Baets, K., Kruta, I., Mapes, R. (eds) Ammonoid Paleobiology: From anatomy to ecology. Topics in Geobiology, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9630-9_20

Download citation

Publish with us

Policies and ethics