Skip to main content

Combined Enabling Technologies for Biodiesel Production in Flow Processes

  • Chapter
  • First Online:
Production of Biofuels and Chemicals with Microwave

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 3))

Abstract

Alternative energy sources and fuels have been investigated to indemnify the higher demand of natural fuels that requires very long time for their formation. In the last 40 years several renewable energy sources have been developed. In this context biodiesel play an important role because its high heating values nearly equivalent to diesel fuels and its low environmental impact. The sustainability of the process is strongly related to the type of oil source and to the overall energy consumption. The aim of this chapter is to highlight the synergistic effects on process efficiency by combining different activation techniques such as microwaves , ultrasound , hydrodynamic cavitation and high-shear mixing . A big effort has been done in the search of new highly efficient reactors to produce biodiesel saving time and energy. Inefficient mass transfer is one of the main limitations in biphasic heterogeneous reactions such as transesterification . Although many types of vigorous mixing have been investigated to address this requirement, most of them suffer of high energy demand. The dielectric heating has been proved to dramatically enhance transesterification reaction because the excellent heat transfer if compared with conventional methods . Thanks to an optimal mass/heat transfer a full triglycerides conversion to methyl esters can be achieved in flow reactors in a very short time either in continuous or semi-continuous mode. Moreover, in accordance with international specifications and analytical ASTM standards , very fast treatments may produce a high-quality biodiesel . The high efficiency and the low energy consumption enable an easy scale up of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Satyanarayana M, Muraleedharan C (2011) A comparative study of vegetable oil methyl esters (biodiesels). Energy 36(4):2129–2137. doi:10.1016/j.energy.2010.09.050

    Article  Google Scholar 

  2. Satyanarayana M, Muraleedharan C (2011) Comparative studies of biodiesel production from rubber seed oil, coconut oil, and palm oil including thermogravimetric analysis. Energy Sources Part A 33(10):925–937. doi:10.1080/15567030903330637

    Article  Google Scholar 

  3. Thanh LT, Okitsu K, Sadanaga Y, Takenaka N, Maeda Y, Bandow H (2010) Ultrasound-assisted production of biodiesel fuel from vegetable oils in a small scale circulation process. Bioresour Technol 101(2):639–645. doi:10.1016/j.biortech.2009.08.050

    Article  Google Scholar 

  4. Yee KF, Kansedo J, Lee KT (2010) Biodiesel production from palm oil via heterogeneous transesterification: optimization study. Chem Eng Commun 197(12):1597–1611. doi:10.1080/00986445.2010.500156

    Article  Google Scholar 

  5. Salamatinia B, Mootabadi H, Hashemizadeh I, Abdullah AZ (2013) Intensification of biodiesel production from vegetable oils using ultrasonic-assisted process: optimization and kinetic. Chem Eng Process 73(0):135–143. doi:10.1016/j.cep.2013.07.010

  6. Cheng W, Su F, Wu G, Yao Y (2011) Analysis on the clean production technology of processing waste edible oils to biodiesel. In: International conference on materials for renewable energy and environment (ICMREE), 20–22 May 2011, pp 449–455

    Google Scholar 

  7. Wan Omar WNN, Amin NAS (2011) Biodiesel production from waste cooking oil over alkaline modified zirconia catalyst. Fuel Process Technol 92(12):2397–2405. doi:10.1016/j.fuproc.2011.08.009

    Article  Google Scholar 

  8. Xu J, Xiao G, Zhou Y, Jiang J (2011) Production of biofuels from high-acid-value waste oils. Energy Fuels 25(10):4638–4642. doi:10.1021/ef2006723

    Article  Google Scholar 

  9. Li M, Zheng Y, Chen Y, Zhu X (2014) Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk. Bioresour Technol 154(0):345–348. doi:10.1016/j.biortech.2013.12.070

  10. Nautiyal P, Subramanian KA, Dastidar MG (2014) Production and characterization of biodiesel from algae. Fuel Process Technol 120(0):79–88. doi:10.1016/j.fuproc.2013.12.003

  11. Sawaengsak W, Silalertruksa T, Bangviwat A, Gheewala SH (2014) Life cycle cost of biodiesel production from microalgae in Thailand. Energy Sustain Dev 18(0):67–74. doi:10.1016/j.esd.2013.12.003

  12. Makareviciene V, Skorupskaite V, Levisauskas D, Andruleviciute V, Kazancev K (2014) The optimization of biodiesel fuel production from microalgae oil using response surface methodogy. Int J Green Energy 11(5):527–541. doi:10.1080/15435075.2013.777911

    Article  Google Scholar 

  13. Im H, Lee H, Park MS, Yang J-W, Lee JW (2014) Concurrent extraction and reaction for the production of biodiesel from wet microalgae. Bioresour Technol 152(0):534-537. doi:10.1016/j.biortech.2013.11.023

  14. Dubé MA, Tremblay AY, Liu J (2007) Biodiesel production using a membrane reactor. Bioresour Technol 98(3):639–647. doi:10.1016/j.biortech.2006.02.019

    Article  Google Scholar 

  15. Falahati H, Tremblay AY (2012) The effect of flux and residence time in the production of biodiesel from various feedstocks using a membrane reactor. Fuel 91(1):126–133. doi:10.1016/j.fuel.2011.06.019

    Article  Google Scholar 

  16. Baroutian S, Aroua MK, Raman AAA, Sulaiman NMN (2011) A packed bed membrane reactor for production of biodiesel using activated carbon supported catalyst. Bioresour Technol 102(2):1095–1102. doi:10.1016/j.biortech.2010.08.076

    Article  Google Scholar 

  17. Anton AK (2009) Novel process for biodiesel by reactive absorption. Sep Purif Technol 69(3):280–287. doi:10.1016/j.seppur.2009.08.004

    Article  MathSciNet  Google Scholar 

  18. Kiss AA, Dimian AC, Rothenberg G (2007) Biodiesel by catalytic reactive distillation powered by metal oxides. Energy Fuels 22(1):598–604. doi:10.1021/ef700265y

    Article  Google Scholar 

  19. Joelianingsih Maeda H, Hagiwara S, Nabetani H, Sagara Y, Soerawidjaya TH, Tambunan AH, Abdullah K (2008) Biodiesel fuels from palm oil via the non-catalytic transesterification in a bubble column reactor at atmospheric pressure: a kinetic study. Renewable Energy 33(7):1629–1636. doi:10.1016/j.renene.2007.08.011

    Article  Google Scholar 

  20. Chen Y-H, Huang Y-H, Lin R-H, Shang N-C (2010) A continuous-flow biodiesel production process using a rotating packed bed. Bioresour Technol 101(2):668–673. doi:10.1016/j.biortech.2009.08.081

    Article  Google Scholar 

  21. Reyes JF, Malverde PE, Melin PS, De Bruijn JP (2010) Biodiesel production in a jet flow stirred reactor. Fuel 89(10):3093–3098. doi:10.1016/j.fuel.2010.06.002

    Article  Google Scholar 

  22. Vyas AP, Verma JL, Subrahmanyam N (2010) A review on FAME production processes. Fuel 89(1):1–9. doi:10.1016/j.fuel.2009.08.014

    Article  Google Scholar 

  23. Pilli S, Bhunia P, Yan S, LeBlanc RJ, Tyagi RD, Surampalli RY (2011) Ultrasonic pretreatment of sludge: a review. Ultrason Sonochem 18(1):1–18. doi:10.1016/j.ultsonch.2010.02.014

    Article  Google Scholar 

  24. Gogate PR, Tayal RK, Pandit AB (2006) Cavitation: a technology on the horizon. Curr Sci 91(1):35–46

    Google Scholar 

  25. Sutkar VS, Gogate PR (2009) Design aspects of sonochemical reactors: Techniques for understanding cavitational activity distribution and effect of operating parameters. Chem Eng J 155(1–2):26–36. doi:10.1016/j.cej.2009.07.021

    Article  Google Scholar 

  26. Gogate PR, Pandit AB (2000) Engineering design method for cavitational reactors: I. Sonochem Reactors. Aiche J 46(2):372–379. doi:10.1002/aic.690460215

    Article  Google Scholar 

  27. Cravotto G, Cintas P (2012) Harnessing mechanochemical effects with ultrasound-induced reactions. Chem Sci 3(2):295–307. doi:10.1039/c1sc00740h

    Article  Google Scholar 

  28. Cravotto G, Gaudino EC, Cintas P (2013) On the mechanochemical activation by ultrasound. Chem Soc Rev 42(18):7521–7534. doi:10.1039/c2cs35456j

    Article  Google Scholar 

  29. Ji J, Wang J, Li Y, Yu Y, Xu Z (2006) Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation. Ultrasonics 44:E411–E414. doi:10.1016/j.ultras.2006.05.020

    Article  Google Scholar 

  30. Shin J, Kim H, Hong S-G, Kwon S, Na YE, Bae SH, Park W-K, Kang K-K (2012) Effects of ultrasonification and mechanical stirring methods for the production of biodiesel from rapeseed oil. Korean J Chem Eng 29(4):460–463. doi:10.1007/s11814-011-0205-3

    Article  Google Scholar 

  31. Avramovic JM, Stamenkovic OS, Todorovic ZB, Lazic ML, Veljkovic VB (2010) The optimization of the ultrasound-assisted base-catalyzed sunflower oil methanolysis by a full factorial design. Fuel Process Technol 91(11):1551–1557. doi:10.1016/j.fuproc.2010.06.001

    Article  Google Scholar 

  32. Babajide O, Petrik L, Amigun B, Ameer F (2010) Low-cost feedstock conversion to biodiesel via ultrasound technology. Energies 3(10):1691–1703

    Article  Google Scholar 

  33. Yin X, Ma H, You Q, Wang Z, Chang J (2012) Comparison of four different enhancing methods for preparing biodiesel through transesterification of sunflower oil. Appl Energy 91(1):320–325. doi:10.1016/j.apenergy.2011.09.016

    Article  Google Scholar 

  34. Thanh LT, Okitsu K, Sadanaga Y, Takenaka N, Maeda Y, Bandow H (2010) A two-step continuous ultrasound assisted production of biodiesel fuel from waste cooking oils: a practical and economical approach to produce high quality biodiesel fuel. Bioresour Technol 101(14):5394–5401. doi:10.1016/j.biortech.2010.02.060

    Article  Google Scholar 

  35. Kumar G, Kumar D, Poonam, Johari R, Singh CP (2011) Enzymatic transesterification of Jatropha curcas oil assisted by ultrasonication. Ultrason Sonochem 18(5):923–927. doi:10.1016/j.ultsonch.2011.03.004

  36. Stavarache C, Vinatoru M, Nishimura R, Maeda Y (2005) Fatty acids methyl esters from vegetable oil by means of ultrasonic energy. Ultrason Sonochem 12(5):367–372. doi:10.1016/j.ultsonch.2004.04.001

    Article  Google Scholar 

  37. Fan X, Wang X, Chen F (2010) Ultrasonically assisted production of biodiesel from crude cottonseed oil. Int J Green Energy 7(2):117–127. doi:10.1080/15435071003673419

    Article  Google Scholar 

  38. Cintas P, Mantegna S, Gaudino EC, Cravotto G (2010) A new pilot flow reactor for high-intensity ultrasound irradiation. Application to the synthesis of biodiesel. Ultrason Sonochem 17(6):985–989. doi:10.1016/j.ultsonch.2009.12.003

    Article  Google Scholar 

  39. Riva G, Toscano G, Foppa Pedretti E, Duca D (2011) Refined soybean oil transesterification enhanced by sonication. Biomass Bioenergy 35(7):2867–2873. doi:10.1016/j.biombioe.2011.03.023

    Article  Google Scholar 

  40. Choedkiatsakul I, Ngaosuwan K, Cravotto G, Assabumrungrat S (2014) Biodiesel production from palm oil using combined mechanical stirred and ultrasonic reactor. Ultrason Sonochem 21(4):1585–1591. doi:10.1016/j.ultsonch.2013.12.025

  41. Lidstrom P, Tierney J, Wathey B, Westman J (2001) Microwave assisted organic synthesis—a review. Tetrahedron 57(45):9225–9283. doi:10.1016/s0040-4020(01)00906-1

    Article  Google Scholar 

  42. Leonelli C, Mason TJ (2010) Microwave and ultrasonic processing: now a realistic option for industry. Chem Eng Process 49(9):885–900. doi:10.1016/j.cep.2010.05.006

    Article  Google Scholar 

  43. Nuchter M, Ondruschka B, Bonrath W, Gum A (2004) Microwave assisted synthesis—a critical technology overview. Green Chem 6(3):128–141. doi:10.1039/b310502d

    Article  Google Scholar 

  44. Glasnov TN, Kappe CO (2007) Microwave-assisted synthesis under continuous-flow conditions. Macromol Rapid Commun 28(4):395–410. doi:10.1002/marc.200600665

    Article  Google Scholar 

  45. Anan N, Danisman A (2007) Alkali catalyzed transesterification of cottonseed oil by microwave irradiation. Fuel 86(17–18):2639–2644. doi:10.1016/j.fuel.2007.05.021

    Google Scholar 

  46. Kumar R, Kumar GR, Chandrashekar N (2011) Microwave assisted alkali-catalyzed transesterification of Pongamia pinnata seed oil for biodiesel production. Bioresour Technol 102(11):6617–6620. doi:10.1016/j.biortech.2011.03.024

    Article  Google Scholar 

  47. Kanitkar A, Balasubramanian S, Lima M, Boldor D (2011) A critical comparison of methyl and ethyl esters production from soybean and rice bran oil in the presence of microwaves. Bioresour Technol 102(17):7896–7902. doi:10.1016/j.biortech.2011.05.091

    Article  Google Scholar 

  48. Jaliliannosrati H, Amin NAS, Talebian-Kiakalaieh A, Noshadi I (2013) Microwave assisted biodiesel production from Jatropha curcas L. seed by two-step in situ process: optimization using response surface methodology. Bioresour Technol 136:565–573. doi:10.1016/j.biortech.2013.02.078

    Article  Google Scholar 

  49. Lertsathapornsuk V, Pairintra R, Aryusuk K, Krisnangkura K (2008) Microwave assisted in continuous biodiesel production from waste frying palm oil and its performance in a 100 kW diesel generator. Fuel Process Technol 89(12):1330–1336. doi:10.1016/j.fuproc.2008.05.024

    Article  Google Scholar 

  50. Liao C-C, Chung T-W (2011) Analysis of parameters and interaction between parameters of the microwave-assisted continuous transesterification process of Jatropha oil using response surface methodology. Chem Eng Res Des 89(12A):2575–2581. doi:10.1016/j.cherd.2011.06.002

    Article  Google Scholar 

  51. Encinar JM, Gonzalez JF, Martinez G, Sanchez N, Pardal A (2012) Soybean oil transesterification by the use of a microwave flow system. Fuel 95(1):386–393. doi:10.1016/j.fuel.2011.11.010

    Article  Google Scholar 

  52. Gogate PR, Pandit AB (2000) Engineering design methods for cavitation reactors II: hydrodynamic cavitation. AIChE J 46(8):1641–1649. doi:10.1002/aic.690460815

    Article  Google Scholar 

  53. Kumar KS, Moholkar VS (2007) Conceptual design of a novel hydrodynamic cavitation reactor. Chem Eng Sci 62(10):2698–2711. doi:10.1016/j.ces.2007.02.010

    Article  Google Scholar 

  54. Gole VL, Naveen KR, Gogate PR (2013) Hydrodynamic cavitation as an efficient approach for intensification of synthesis of methyl esters from sustainable feedstock. Chem Eng Process 71:70–76. doi:10.1016/j.cep.2012.10.006

    Article  Google Scholar 

  55. Pal A, Verma A, Kachhwaha SS, Maji S (2010) Biodiesel production through hydrodynamic cavitation and performance testing. Renew Energy 35(3):619–624. doi:10.1016/j.renene.2009.08.027

    Article  Google Scholar 

  56. Ghayal D, Pandit AB, Rathod VK (2013) Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil. Ultrason Sonochem 20(1):322–328. doi:10.1016/j.ultsonch.2012.07.009

    Article  Google Scholar 

  57. Gole VL, Gogate PR (2013) Intensification of synthesis of biodiesel from non-edible oil using sequential combination of microwave and ultrasound. Fuel Process Technol 106:62–69. doi:10.1016/j.fuproc.2012.06.021

    Article  Google Scholar 

  58. Gole VL, Gogate PR (2012) A review on intensification of synthesis of biodiesel from sustainable feed stock using sonochemical reactors. Chem Eng Process 53:1–9. doi:10.1016/j.cep.2011.12.008

    Article  Google Scholar 

  59. Choedkiatsakul I, Ngaosuwan K, Assabumrungrat S, Tabasso S, Cravotto G (2014) Integrated flow reactor that combines and microwave irradiation for biodiesel production. Biomass Bioenergy (submitted paper)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Cravotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cravotto, G., Choedkiatsakul, I. (2015). Combined Enabling Technologies for Biodiesel Production in Flow Processes. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Biofuels and Chemicals with Microwave. Biofuels and Biorefineries, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9612-5_3

Download citation

Publish with us

Policies and ethics