Skip to main content

Lessons from the QSCR Structure for Quorum Sensing

  • Chapter
  • First Online:
Pseudomonas

Abstract

Pseudomonas aeruginosa, along with various other gram-negative bacterial species, utilizes the process of quorum sensing to sense the surrounding environment and respond accordingly, which ultimately promotes its survival and virulence in human hosts. The small, lipid-diffusible signaling molecules known as acyl-homoserine lactones (AHLs) play an integral role in regulating the quorum sensing system in P. aeruginosa. 3OC12-HSL is recognized by the AHL receptors LasR and QscR. The crystallographic structure of full-length QscR revealed a unique, symmetrical criss-crossed homodimer that is poised to bind DNA. Thus, QscR is the only full-length quorum sensing receptor bound to its endogenous signaling ligand (3OC12-HSL) that has been captured in the activated state. This chapter discusses the lessons learned from the structural studies of QscR, which have provided valuable insights into the varied mechanisms that QscR and other AHL receptors, including P. aeruginosa LasR, may use to respond to AHLs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antunes LCM, Ferreira RBR, Lostroh CP, Greenberg EP (2008) A mutational analysis defines Vibrio fischeri LuxR binding sites. J Bacteriol 190:4392–4397 doi:10.1128/JB.01443-07

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bodman vonSB, Majerczak DR, Coplin DL (1998) A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. Proc Natl Acad Sci U S A 95:7687–7692

    Google Scholar 

  • Boettcher KJ, Ruby EG (1995) Detection and quantification of Vibrio fischeri autoinducer from symbiotic squid light organs. J Bacteriol 177:1053–1058

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bottomley MJ, Muraglia E, Bazzo R, Carfì A (2007) Molecular insights into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bound to its autoinducer. J Biol Chem 282:13592–13600. doi:10.1074/jbc.M700556200

    CAS  PubMed  Google Scholar 

  • Cao JG, Meighen EA (1989) Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi. J Biol Chem 264:21670–21676

    CAS  PubMed  Google Scholar 

  • Chandler JR, Duerkop BA, Hinz A et al (2009) Mutational analysis of Burkholderia thailandensis quorum sensing and self-aggregation. J Bacteriol 191:5901–5909. doi:10.1128/JB.00591-09

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen G, Swem LR, Swem DL et al (2011) A strategy for antagonizing quorum sensing. Mol Cell 42:199–209. doi:10.1016/j.molcel.2011.04.003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi SH, Greenberg EP (1991) The C-terminal region of the Vibrio fischeri LuxR protein contains an inducer-independent lux gene activating domain. Proc Natl Acad Sci U S A 88:11115–11119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chugani SA, Whiteley M, Lee KM et al (2001) QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 98:2752–2757. doi:10.1073/pnas.051624298

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chung J, Goo E, Yu S et al (2011) Small-molecule inhibitor binding to an N-acyl-homoserine lactone synthase. Proc Natl Acad Sci U S A 108:12089–12094. doi:10.1073/pnas.1103165108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Churchill MEA (2006) A new GNAT in bacterial signaling? Structure 14:1342–1344. doi:10.1016/j.str.2006.08.002

    CAS  PubMed  Google Scholar 

  • Churchill MEA, Chen L (2011) Structural basis of acyl-homoserine lactone-dependent signaling. Chem Rev 111:68–85. doi:10.1021/cr1000817

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cooley M, Chhabra SR, Williams P (2008) N-Acylhomoserine lactone-mediated quorum sensing: a twist in the tail and a blow for host immunity. Chem Biol 15:1141–1147. doi:10.1016/j.chembiol.2008.10.010

    CAS  PubMed  Google Scholar 

  • Daniels R, Vanderleyden J, Michiels J (2004) Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28:261–289

    CAS  PubMed  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP et al (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298

    CAS  PubMed  Google Scholar 

  • Dekimpe V, Déziel E (2009) Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhlR regulates LasR-specific factors. Microbiology (Reading Engl) 155:712–723. doi:10.1099/mic.0.022764-0

    CAS  PubMed  Google Scholar 

  • Devine JH, Shadel GS, Baldwin TO (1989) Identification of the operator of the lux regulon from the Vibrio fischeri strain ATCC7744. Proc Natl Acad Sci U S A 86:5688–5692

    CAS  PubMed Central  PubMed  Google Scholar 

  • Drescher K, Shen Y, Bassler BL, Stone HA (2013) Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems. Proc Natl Acad Sci U S A 110:4345–4350. doi:10.1073/pnas.1300321110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duerkop BA, Herman JP, Ulrich RL et al (2008) The Burkholderia mallei BmaR3-BmaI3 quorum-sensing system produces and responds to N-3-hydroxy-octanoyl homoserine lactone. J Bacteriol 190:5137–5141. doi:10.1128/JB.00246-08

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dunny GM, Leonard BA, Hedberg PJ (1995) Pheromone-inducible conjugation in Enterococcus faecalis: interbacterial and host-parasite chemical communication. J Bacteriol 177:871–876

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eberhard A, Burlingame AL, Eberhard C et al (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. BioChemistry 20:2444–2449

    CAS  PubMed  Google Scholar 

  • Eberhard A, Widrig CA, McBath P, Schineller JB (1986) Analogs of the autoinducer of bioluminescence in Vibrio fischeri. Arch Microbiol 146:35–40

    CAS  PubMed  Google Scholar 

  • Egland KA, Greenberg EP (2000) Conversion of the Vibrio fischeri transcriptional activator, LuxR, to a repressor. J Bacteriol 182:805–811

    CAS  PubMed Central  PubMed  Google Scholar 

  • Engebrecht J, Silverman M (1987) Nucleotide sequence of the regulatory locus controlling expression of bacterial genes for bioluminescence. Nucleic Acids Res 15:10455–10467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Engebrecht J, Nealson K, Silverman M (1983) Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32:773–781

    CAS  PubMed  Google Scholar 

  • Fukushima J, Ishiwata T, Kurata M et al (1994) Intracellular receptor-type transcription factor, LasR, contains a highly conserved amphipathic region which precedes the putative helix-turn-helix DNA binding motif. Nucleic Acids Res 22:3706–3707

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fuqua C (2006) The QscR quorum-sensing regulon of Pseudomonas aeruginosa: an orphan claims its identity. J Bacteriol 188:3169–3171. doi:10.1128/JB.188.9.3169-3171.2006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fuqua WC, Winans SC (1994) A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J Bacteriol 176:2796–2806

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fuqua C, Winans SC (1996) Conserved cis-acting promoter elements are required for density-dependent transcription of Agrobacterium tumefaciens conjugal transfer genes. J Bacteriol 178:435–440

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fuqua C, Winans SC, Greenberg EP (1996) Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu Rev Microbiol 50:727–751. doi:10.1146/annurev.micro.50.1.727

    CAS  PubMed  Google Scholar 

  • Galloway WRJD, Hodgkinson JT, Bowden SD et al (2011) Quorum sensing in gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem Rev 111:28–67. doi:10.1021/cr100109t

    CAS  PubMed  Google Scholar 

  • Galloway WRJD, Hodgkinson JT, Bowden S et al (2012) Applications of small molecule activators and inhibitors of quorum sensing in gram-negative bacteria. Trends Microbiol 20:449–458. doi:10.1016/j.tim.2012.06.003

    CAS  PubMed  Google Scholar 

  • Gambello MJ, Kaye S, Iglewski BH (1993) LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect Immun 61:1180–1184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geske GD, Wezeman RJ, Siegel AP, Blackwell HE (2005) Small molecule inhibitors of bacterial quorum sensing and biofilm formation. J Am Chem Soc 127:12762–12763. doi:10.1021/ja0530321

    CAS  PubMed  Google Scholar 

  • Geske GD, OʼNeill JC, Blackwell HE (2008) Expanding dialogues: from natural autoinducers to non-natural analogues that modulate quorum sensing in gram-negative bacteria. Chem Soc Rev 37:1432–1447. doi:10.1039/b703021p

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gilbert KB, Kim TH, Gupta R et al (2009) Global position analysis of the Pseudomonas aeruginosa quorum-sensing transcription factor LasR. Mol Microbiol 73:1072–1085. doi:10.1111/j.1365-2958.2009.06832.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gould TA, Schweizer HP, Churchill MEA (2004a) Structure of the Pseudomonas aeruginosa acyl-homoserinelactone synthase LasI. Mol Microbiol 53:1135–1146. doi:10.1111/j.1365-2958.2004.04211.x

    CAS  PubMed  Google Scholar 

  • Gould TA, Watson WT, Choi KH et al (2004b) Crystallization of Pseudomonas aeruginosa AHL synthase LasI using beta-turn crystal engineering. Acta Crystallogr D Biol Crystallogr 60:518–520. doi:10.1107/S0907444903028300

    PubMed  Google Scholar 

  • Gould TA, Herman J, Krank J, Murphy RC (2006) Specificity of acyl-homoserine lactone synthases examined by mass spectrometry. J Bacteriol 188:773–783

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gram L, de Nys R, Maximilien R et al (1996) Inhibitory effects of secondary metabolites from the red Alga Delisea pulchra on swarming motility of Proteus mirabilis. Appl Environ Microbiol 62:4284–4287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ha C, Park SJ, Im S-J et al (2012) Interspecies signaling through QscR, a quorum receptor of Pseudomonas aeruginosa. Mol Cells 33:53–59. doi:10.1007/s10059-012-2208-2

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ham JH, Melanson RA, Rush MC (2011) Burkholderia glumae: next major pathogen of rice? Mol Plant Pathol 12:329–339. doi:10.1111/j.1364-3703.2010.00676.x

    CAS  PubMed  Google Scholar 

  • Hanzelka BL, Greenberg EP (1995) Evidence that the N-terminal region of the Vibrio fischeri LuxR protein constitutes an autoinducer-binding domain. J Bacteriol 177:815–817

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ikeda T, Inoue Y, Suehiro A et al. (2002) The effects of cyclodextrins on autoinducer activities of quorum sensing in Pseudomonas aeruginosa. J Incl Phenom Macrocycl Chem 44:381–382

    CAS  Google Scholar 

  • Jakobsen TH, Bjarnsholt T, Jensen P et al (2013) Targeting quorum sensing in Pseudomonas aeruginosa biofilms: current and emerging inhibitors. Future Microbiol 8:901–921. doi:10.2217/fmb.13.57

    CAS  PubMed  Google Scholar 

  • Jimenez PN, Koch G, Thompson JA et al (2012) The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 76:46–65. doi:10.1128/MMBR.05007-11

    CAS  PubMed  Google Scholar 

  • Joo H-S, Otto M (2012) Molecular basis of in vivo biofilm formation by bacterial pathogens. Chem Biol 19:1503–1513. doi:10.1016/j.chembiol.2012.10.022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245. doi:10.1016/j.biotechadv.2012.10.004

    CAS  PubMed  Google Scholar 

  • Kaplan HB, Greenberg EP (1985) Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J Bacteriol 163:1210–1214

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keller L, Surette MG (2006) Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4:249–258. doi:10.1038/nrmicro1383

    CAS  PubMed  Google Scholar 

  • Khan SR, Herman J, Krank J, Serkova NJ (2007) N-(3-hydroxyhexanoyl)-L-homoserine lactone is the biologically relevant quormone that regulates the phz operon of Pseudomonas chlororaphis strain 30–84. Appl Environ Microbiol 73:7443–7455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kiratisin P, Tucker KD, Passador L (2002) LasR, a transcriptional activator of Pseudomonas aeruginosa virulence genes, functions as a multimer. J Bacteriol 184:4912–4919

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kirwan JP, Gould TA, Schweizer HP et al (2006) Quorum-sensing signal synthesis by the Yersinia pestis acyl-homoserine lactone synthase YspI. J Bacteriol 188:784–788. doi:10.1128/JB.188.2.784-788.2006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kolibachuk D, Greenberg EP (1993) The Vibrio fischeri luminescence gene activator LuxR is a membrane-associated protein. J Bacteriol 175:7307–7312

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 3:a010306. doi:10.1101/cshperspect.a010306

    Google Scholar 

  • Latifi A, Winson MK, Foglino M et al (1995) Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 17:333–343

    CAS  PubMed  Google Scholar 

  • Latifi A, Foglino M, Tanaka K et al (1996) A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21:1137–1146

    CAS  PubMed  Google Scholar 

  • Lee J-H, Lequette Y, Greenberg EP (2006) Activity of purified QscR, a Pseudomonas aeruginosa orphan quorum-sensing transcription factor. Mol Microbiol 59:602–609. doi:10.1111/j.1365-2958.2005.04960.x

    CAS  PubMed  Google Scholar 

  • Lequette Y, Lee J-H, Ledgham F et al (2006) A distinct QscR regulon in the Pseudomonas aeruginosa quorum-sensing circuit. J Bacteriol 188:3365–3370. doi:10.1128/JB.188.9.3365-3370.2006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lerat E, Moran NA (2004) The evolutionary history of quorum-sensing systems in bacteria. Mol Biol Evol 21:903–913. doi:10.1093/molbev/msh097

    CAS  PubMed  Google Scholar 

  • Lindemann A, Pessi G, Schaefer AL et al (2011) Isovaleryl-homoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont Bradyrhizobium japonicum. Proc Natl Acad Sci U S A 108:16765–16770. doi:10.1073/pnas.1114125108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lintz MJ, Oinuma K-I, Wysoczynski CL et al (2011) Crystal structure of QscR, a Pseudomonas aeruginosa quorum sensing signal receptor. Proc Natl Acad Sci U S A 108:15763–15768. doi:10.1073/pnas.1112398108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu HB, Lee JH, Kim JS, Park S (2010) Inhibitors of the Pseudomonas aeruginosa quorum‐sensing regulator, QscR. Biotechnol Bioeng 106:119–126

    CAS  PubMed  Google Scholar 

  • Luo ZQ, Farrand SK (1999) Signal-dependent DNA binding and functional domains of the quorum-sensing activator TraR as identified by repressor activity. Proc Natl Acad Sci U S A 96:9009–9014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manefield M, Turner SL (2002) Quorum sensing in context: out of molecular biology and into microbial ecology. Microbiology (Reading Engl) 148:3762–3764

    CAS  PubMed  Google Scholar 

  • Mattmann ME, Shipway PM, Heth NJ, Blackwell HE (2011) Potent and selective synthetic modulators of a quorum sensing repressor in Pseudomonas aeruginosa identified from second-generation libraries of N-acylated L-homoserine lactones. Chembiochem 12:942–949. doi:10.1002/cbic.201000708

    CAS  PubMed Central  PubMed  Google Scholar 

  • McInnis CE, Blackwell HE (2011) Thiolactone modulators of quorum sensing revealed through library design and screening. Bioorg Med Chem 19:4820–4828. doi:10.1016/j.bmc.2011.06.071

    CAS  PubMed Central  PubMed  Google Scholar 

  • Minogue TD, Wehland-von Trebra M, Bernhard F, Bodman von SB (2002) The autoregulatory role of EsaR, a quorum-sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function. Mol Microbiol 44:1625–1635

    CAS  PubMed  Google Scholar 

  • Miyashiro T, Ruby EG (2012) Shedding light on bioluminescence regulation in Vibrio fischeri. Mol Microbiol 84:795–806. doi:10.1111/j.1365-2958.2012.08065.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moré MI, Finger LD, Stryker JL et al (1996) Enzymatic synthesis of a quorum-sensing autoinducer through use of defined substrates. Science 272:1655–1658

    PubMed  Google Scholar 

  • Müh U, Schuster M, Heim R et al (2006) Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen. Antimicrob Agents Chemother 50:3674–3679. doi:10.1128/AAC.00665-06

    PubMed Central  PubMed  Google Scholar 

  • Nickel JC, Ruseska I, Wright JB, Costerton JW (1985) Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother 27:619–624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ochsner UA, Reiser J (1995) Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92:6424–6428

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oinuma K-I, Greenberg EP (2011) Acyl-homoserine lactone binding to and stability of the orphan Pseudomonas aeruginosa quorum-sensing signal receptor QscR. J Bacteriol 193:421–428. doi:10.1128/JB.01041-10

    CAS  PubMed Central  PubMed  Google Scholar 

  • OʼToole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    PubMed  Google Scholar 

  • Park S-J, Liu H-B, Park S, Lee J-H (2013) Modulation of QscR, a quorum sensing receptor of Pseudomonas aeruginosa, by truncation of a signal binding domain. Res Microbiol. doi:10.1016/j.resmic.2013.02.001

    Google Scholar 

  • Parsek MR, Val DL, Hanzelka BL et al (1999) Acyl homoserine-lactone quorum-sensing signal generation. Proc Natl Acad Sci U S A 96:4360–4365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Passador L, Cook JM, Gambello MJ et al (1993) Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260:1127–1130

    CAS  PubMed  Google Scholar 

  • Passador L, Tucker KD, Guertin KR et al (1996) Functional analysis of the Pseudomonas aeruginosa autoinducer PAI. J Bacteriol 178:5995–6000

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patankar AV, González JE (2009) Orphan LuxR regulators of quorum sensing. FEMS Microbiol Rev 33:739–756. doi:10.1111/j.1574-6976.2009.00163.x

    CAS  PubMed  Google Scholar 

  • Pearson JP, Gray KM, Passador L et al (1994) Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci U S A 91:197–201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pearson JP, Passador L, Iglewski BH, Greenberg EP (1995) A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92:1490–1494

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756–5767

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pearson JP, Van Delden C, Iglewski BH (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181:1203–1210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pesci EC, Pearson JP, Seed PC, Iglewski BH (1997) Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179:3127–3132

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pirhonen M, Flego D, Heikinheimo R, Palva ET (1993) A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J 12:2467–2476

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pomini AM, Marsaioli AJ (2008) Absolute configuration and antimicrobial activity of acylhomoserine lactones. J Nat Prod 71:1032–1036. doi:10.1021/np800127b

    CAS  PubMed  Google Scholar 

  • Praneenararat T, Geske GD, Blackwell HE (2009) Efficient synthesis and evaluation of quorum-sensing modulators using small molecule macroarrays. Org Lett 11:4600–4603. doi:10.1021/ol901871y

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qin Y, Luo ZQ, Smyth AJ et al (2000) Quorum-sensing signal binding results in dimerization of TraR and its release from membranes into the cytoplasm. EMBO J 19:5212–5221. doi:10.1093/emboj/19.19.5212

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rasmussen TB, Bjarnsholt T, Skindersoe ME et al (2005) Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187:1799–1814. doi:10.1128/JB.187.5.1799-1814.2005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruby EG (1996) Lessons from a cooperative, bacterial-animal association: the Vibrio fischeri-Euprymna scolopes light organ symbiosis. Annu Rev Microbiol 50:591–624. doi:10.1146/annurev.micro.50.1.591

    CAS  PubMed  Google Scholar 

  • Ruby EG, McFall-Ngai MJ (1992) A squid that glows in the night: development of an animal-bacterial mutualism. J Bacteriol 174:4865–4870

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rumbaugh KP, Griswold JA, Iglewski BH, Hamood AN (1999) Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect Immun 67:5854–5862

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med. doi:10.1101/cshperspect.a012427

    Google Scholar 

  • Sauer K, Camper AK, Ehrlich GD et al (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schaefer AL, Hanzelka BL, Eberhard A, Greenberg EP (1996a) Quorum sensing in Vibrio fischeri: probing autoinducer-LuxR interactions with autoinducer analogs. J Bacteriol 178:2897–2901

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schaefer AL, Val DL, Hanzelka BL et al (1996b) Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc Natl Acad Sci U S A 93:9505–9509

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schaefer AL, Greenberg EP, Oliver CM et al (2008) A new class of homoserine lactone quorum-sensing signals. Nature 454:595–599. doi:10.1038/nature07088

    CAS  PubMed  Google Scholar 

  • Schu DJ, Ramachandran R, Geissinger JS, Stevens AM (2011) Probing the impact of ligand binding on the acyl-homoserine lactone-hindered transcription factor EsaR of Pantoea stewartii subsp. stewartii. J Bacteriol 193:6315–6322. doi:10.1128/JB.05956-11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schuster M, Greenberg EP (2007) Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon. BMC Genomics 8:287. doi:10.1186/1471-2164-8-287

    PubMed Central  PubMed  Google Scholar 

  • Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schuster M, Urbanowski ML, Greenberg EP (2004) Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. Proc Natl Acad Sci U S A 101:15833–15839. doi:10.1073/pnas.0407229101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seed PC, Passador L, Iglewski BH (1995) Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J Bacteriol 177:654–659

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shaw PD, Ping G, Daly SL et al (1997) Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci U S A 94:6036–6041

    CAS  PubMed Central  PubMed  Google Scholar 

  • Skovstrup S, Le Quement ST, Hansen T et al (2013) Identification of LasR ligands through a virtual screening approach. ChemMedChem 8:157–163. doi:10.1002/cmdc.201200434

    CAS  PubMed  Google Scholar 

  • Smith RS, Iglewski BH (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6:56–60

    CAS  PubMed  Google Scholar 

  • Smith KM, Bu Y, Suga H (2003) Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem Biol 10:81–89

    CAS  PubMed  Google Scholar 

  • Stauff DL, Bassler BL (2011) Quorum sensing in Chromobacterium violaceum: DNA recognition and gene regulation by the CviR receptor. J Bacteriol 193:3871–3878. doi:10.1128/JB.05125-11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steindler L, Venturi V (2007) Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiol Lett 266:1–9. doi:10.1111/j.1574-6968.2006.00501.x

    CAS  PubMed  Google Scholar 

  • Stevens AM, Queneau Y, Soulère L et al (2011) Mechanisms and synthetic modulators of AHL-dependent gene regulation. Chem Rev 111:4–27. doi:10.1021/cr100064s

    CAS  PubMed  Google Scholar 

  • Stevens AM, Schuster M, Rumbaugh KP (2012) Working together for the common good: cell-cell communication in bacteria. J Bacteriol 194:2131–2141. doi:10.1128/JB.00143-12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Swartzman E, Silverman M, Meighen EA (1992) The luxR gene product of Vibrio harveyi is a transcriptional activator of the lux promoter. J Bacteriol 174:7490–7493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Swem LR, Swem DL, Wingreen NS, Bassler BL (2008) Deducing receptor signaling parameters from in vivo analysis: LuxN/AI-1 quorum sensing in Vibrio harveyi. Cell 134:461–473. doi:10.1016/j.cell.2008.06.023

    CAS  PubMed Central  PubMed  Google Scholar 

  • Swem LR, Swem DL, OʼLoughlin CT et al (2009) A quorum-sensing antagonist targets both membrane-bound and cytoplasmic receptors and controls bacterial pathogenicity. Mol Cell 35:143–153. doi:10.1016/j.molcel.2009.05.029

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tan SY-Y, Chua S-L, Yicai C et al. (2013) Identification of five structurally unrelated quorum sensing inhibitors of Pseudomonas aeruginosa from a natural derivative database. Antimicrob Agents Chemother. doi:10.1128/AAC.00955-13

    Google Scholar 

  • Tang HB, DiMango E, Bryan R et al (1996) Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect Immun 64:37–43

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teiber JF, Horke S, Haines DC et al (2008) Dominant role of paraoxonases in inactivation of the Pseudomonas aeruginosa quorum-sensing signal N-(3-oxododecanoyl)-L-homoserine lactone. Infect Immun 76:2512–2519. doi:10.1128/IAI.01606-07

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thiel V, Kunze B, Verma P et al (2009) New structural variants of homoserine lactones in bacteria. Chembiochem 10:1861–1868. doi:10.1002/cbic.200900126

    CAS  PubMed  Google Scholar 

  • Trott AE, Stevens AM (2001) Amino acid residues in LuxR critical for its mechanism of transcriptional activation during quorum sensing in Vibrio fischeri. J Bacteriol 183:387–392. doi:10.1128/JB.183.1.387-392.2001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsai C-S, Winans SC (2010) LuxR-type quorum-sensing regulators that are detached from common scents. Mol Microbiol 77:1072–1082. doi:10.1111/j.1365-2958.2010.07279.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Urbanowski ML, Lostroh CP, Greenberg EP (2004) Reversible acyl-homoserine lactone binding to purified Vibrio fischeri LuxR protein. J Bacteriol 186:631–637

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vannini A, Volpari C, Gargioli C et al (2002) The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. EMBO J 21:4393–4401

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vannini A, Volpari C, Di Marco S (2004) Crystal structure of the quorum-sensing protein TraM and its interaction with the transcriptional regulator TraR. J Biol Chem 279:24291–24296. doi:10.1074/jbc.M401855200

    CAS  PubMed  Google Scholar 

  • Watson WT, Minogue TD, Val DL et al (2002) Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. Mol Cell 9:685–694

    CAS  PubMed  Google Scholar 

  • Whiteley M, Greenberg EP (2001) Promoter specificity elements in Pseudomonas aeruginosa quorum-sensing-controlled genes. J Bacteriol 183:5529–5534. doi:10.1128/JB.183.19.5529-5534.2001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whiteley M, Bangera MG, Bumgarner RE et al (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860–864. doi:10.1038/35101627

    CAS  PubMed  Google Scholar 

  • Yao Y, Martinez-Yamout MA, Dickerson TJ et al (2006) Structure of the Escherichia coli quorum sensing protein SdiA: activation of the folding switch by acyl homoserine lactones. J Mol Biol 355:262–273. doi:10.1016/j.jmb.2005.10.041

    CAS  PubMed  Google Scholar 

  • Yates EA, Philipp B, Buckley C et al (2002) N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 70:5635–5646

    CAS  PubMed Central  PubMed  Google Scholar 

  • You Z, Fukushima J, Ishiwata T et al (1996) Purification and characterization of LasR as a DNA-binding protein. FEMS Microbiol Lett 142:301–307

    CAS  PubMed  Google Scholar 

  • Zan J, Cicirelli EM, Mohamed NM et al (2012) A complex LuxR-LuxI type quorum sensing network in a roseobacterial marine sponge symbiont activates flagellar motility and inhibits biofilm formation. Mol Microbiol 85:916–933. doi:10.1111/j.1365-2958.2012.08149.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang R-G, Pappas KM, Pappas T et al (2002) Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417:971–974. doi:10.1038/nature00833

    CAS  PubMed  Google Scholar 

  • Zhu J, Winans SC (2001) The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. Proc Natl Acad Sci U S A 98:1507–1512. doi:10.1073/pnas.98.4.1507

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. Michael Schurr and Chris Malarkey for helpful discussions and comments on the manuscript. This work was supported by NIH R56AI081872 to M.E.A.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mair E.A. Churchill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wysoczynski, C., Churchill, M. (2015). Lessons from the QSCR Structure for Quorum Sensing. In: Ramos, JL., Goldberg, J., Filloux, A. (eds) Pseudomonas. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9555-5_8

Download citation

Publish with us

Policies and ethics