Skip to main content

Environmental Archives of Contaminant Particles

  • Chapter
  • First Online:
Environmental Contaminants

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 18))

Abstract

Particulates in the environment may be contaminants or pollutants. They may affect climate through: the absorption of energy in the atmosphere and by reducing the albedo of ice and snow surfaces; may enhance the transfer and distribution of pollutants such as trace metals and persistent organic pollutants via absorption and adsorption to their surfaces; may adversely impact the health of aquatic life and consequently other biota that depend upon it; in the atmosphere they may have direct effects on human health via respiratory disease and the transfer of substances deep into the respiratory system. Therefore, it is important to be able to determine temporal trends in particulate emissions and deposition. Natural archives such as ice, sediment and peat cores can provide well-resolved records, but research has mainly focussed on a few particle types, and predominantly black carbon. In this chapter we review the environmental records of black carbon and other industrially-derived particles, their analysis, interpretation and relative strengths and weaknesses. Finally we consider two emerging particle types: microplastics and nanoparticles. These latter groups have, so far, received little attention from palaeoecological perspectives but their direct impacts on aquatic biota and ability to transport pollutants within the atmosphere and aquatic ecosystems is becoming increasingly apparent in the literature and are predicted to further increase in coming decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allen RJ, Sherwood SC, Norris JR, Zender CS (2012) Recent northern hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature 485:350–354

    CAS  Google Scholar 

  • Anderson HR, Bremner SA, Atkinson RW, Harrison RM, Walters S (2001) Particulate matter and daily mortality and hospital admissions in the West Midlands conurbation of the United Kingdom: associations with fine and coarse particles, black smoke and sulphate. Occup Environ Med 58:504–510

    CAS  Google Scholar 

  • Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605

    CAS  Google Scholar 

  • Andreae MO, Gelencsér A (2006) Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys 6:31–48

    Google Scholar 

  • Bae M-S, Schauer JJ, DeMinter JT, Turner JR (2004) Hourly and daily patterns of particle-phase organic and elemental carbon concentrations in the urban atmosphere. J Air Waste Manage Assoc 54:823–833

    CAS  Google Scholar 

  • Barbir F, Veziroglu TN, Plass HJ Jr (1990) Environmental damage due to fossil fuels use. Int J Hydrog Energy 15:739–749

    CAS  Google Scholar 

  • Barnekow L, Loader NJ, Hicks S, Froyd CA, Goslar T (2007) Strong correlation between summer temperature and pollen accumulation rates for Pinus sylvestris, Picea abies and Betula spp. in a high-resolution record from northern Sweden. J Quat Sci 22:653–658

    Google Scholar 

  • Baron RE, Montgomery WD, Tuladhar SD (2009) An analysis of black carbon mitigation as a response to climate change. Copenhagen Consensus on Climate, CRA International, Washington DC.

    Google Scholar 

  • Battarbee RW (1990) The causes of lake acidification, with special reference to the role of acid deposition. Phil Trans Roy Soc Lond B 327:339–347

    CAS  Google Scholar 

  • Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: A brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395

    CAS  Google Scholar 

  • Bergmann M, Klages M (2012) Increase of litter at the Arctic deep-sea observatory HAUSGARTEN. Mar Pollut Bull 64:2734–2741

    CAS  Google Scholar 

  • Bindler R, Renberg I, Appleby PG, Anderson NJ, Rose NL (2001) Mercury accumulation rates and spatial patterns in lake sediments from West Greenland: A coast to ice margin transect. Environ Sci Technol 35:1736–1741

    CAS  Google Scholar 

  • Bindler R, Segerstrom U, Pettersson-Jensen I-M, Berg A, Hansson S, Holmström H, Olsson K, Renberg I (2011) Early medieval origins of iron mining and settlement in central Sweden: Multiproxy analysis of sediment and peat records from the Norberg mining district. J Arch Sci 38:291–300

    Google Scholar 

  • Birks HJB (1997) Reconstructing environmental impacts of fire from the Holocene sedimentary Record. In: Clark JS (ed) Sediment records of biomass burning and global change. NATO ASI Series. Springer-Verlag, Berlin, pp 295–311

    Google Scholar 

  • Bisiaux MM, Edwards R, McConnell JR, Albert MR, Anschütz H, Neumann TA, Isaksson E, Penner JE (2012a) Variability of black carbon deposition to the East Antarctic Plateau, 1800–2000 AD. Atmos Chem Phys 12:3799–3808

    CAS  Google Scholar 

  • Bisiaux MM, Edwards R, McConnell JR, Curran MAJ, Van Ommen TD, Smith AM, Neumann TA, Pasteris DR, Penner JE, Taylor K (2012b) Changes in black carbon deposition to Antarctica from two high-resolution ice core records, 1850-2000 AD. Atmos Chem Phys 12:4107–4115

    CAS  Google Scholar 

  • Bond TC, Bergstrom RW (2006) Light absorption by carbonaceous particles: an investigative review. Aerosol Sci Technol 39:1–41

    Google Scholar 

  • Bond TC, Bhardwaj E, Dong R, Joghani R, Jung S, Roden C, Streets DG, Trautmann NM (2007) Historical emissions of black carbon and organic carbon aerosol from energy-related combustion, 1850–2000. Glob Biogeochem Cycles 21:GB2018. doi:10.1029/2006GB002840

    Google Scholar 

  • Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn PK, Sarofim MF, Schultz MG, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda SK, Hopke PK, Jacobson MZ, Kaiser JW, Klimont Z, Lohmann U, Schwarz JP, Shindell D, Storelvmo T, Warren SG, Zender CS (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 188:5380–5552

    Google Scholar 

  • Breitenlechner E, Hilber M, Lutz J, Kathrein Y, Unterkircher A, Oeggl K (2010) The impact of mining activities on the environment reflected by pollen, charcoal and geochemical analyses. J Arch Sci 37:1458–1467

    Google Scholar 

  • Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R (2011) Accumulation of microplastic on shorelines worldwide: Sources and sinks. Environ Sci Technol 45:9175–9179

    CAS  Google Scholar 

  • Buringh E, Opperhuizen A (eds) 2002. On health risks of ambient PM in the Netherlands. 1-70. RIVM, Bilthoven.

    Google Scholar 

  • Cachier H, Pertuisot MH (1994) Particulate carbon in Arctic ice. Analysis 22:M34–M37

    CAS  Google Scholar 

  • Charles DF, Binford MW, Furlong ET, Hites RA, Mitchell MJ, Norton SA, Oldfield F, Paterson MJ, Smol JP, Uutala AJ, White JR, Whitehead DR, Wise RJ (1990) Palaeoecological investigation of recent lake acidification in the Adirondack Mountains, N.Y. J Paleolimnol 3:195–241

    Google Scholar 

  • Chen H, Chen S, Quan X, Zhao Y, Zhao H (2009) Sorption of perfluorooctane sulphonate (PFOS) on oil and oil-derived black carbon: Influence of solution pH and [Ca2+]. Chemosphere 77:1406–1411

    CAS  Google Scholar 

  • Chirinos L, Rose NL, Urrutia R, Muñoz P, Torrejón F, Torres L, Cruces F, Araneda A, Zaror C (2006) Environmental evidence of fossil fuel pollution in Laguna Chica de San Pedro lake sediments (Central Chile). Environ Pollut 141:247–256

    CAS  Google Scholar 

  • Chow J, Watson JG, Pritchett LC, Pierson WR, Frazier CA, Purcell RG (1993) The DRI thermal/optical reflectance carbon analysis system: Description, evaluation and applications in U.S. air quality studies. Atmos Environ Pt A 27:1185–1201

    Google Scholar 

  • Chylek P, Johnson B, Wu H (1992a) Black carbon concentration in a Greenland DYE-3 ice core. Geophys Res Lett 19:1951–1953

    CAS  Google Scholar 

  • Chylek P, Johnson B, Wu H (1992b) Black carbon concentration in Byrd Station ice core—from 13,000 to 700 years before present. Ann Geophys Atmos Hydrospheres Space Sci 10:625–629

    CAS  Google Scholar 

  • Claessens M, De Meester S, Van Landuyt L, De Clerck K, Janssen CR (2011) Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar Pollut Bull 62:2199–2204

    CAS  Google Scholar 

  • Clark JS, Patterson WA III (1997) Background and local charcoal in sediments: Scales of fire evidence in the paleorecord. In: Clark JS, Cachier H, Goldammer JG, Stocks B (eds) Sediment records of biomass burning and global change. NATO ASI Series 1: Global Environmental Change, vol 51. Springer, Berlin, pp 23–48

    Google Scholar 

  • Clarke AD, Noone KJ (1985) Soot in the Arctic snowpack: A cause for perturbations in radiative transfer. Atmos Environ 19:2045–2053

    Google Scholar 

  • Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62:2588–2597

    CAS  Google Scholar 

  • Committee on the Medical Effects of Air Pollutants (1995) Non-biological particles and health. London, HMSO. 141 pp

    Google Scholar 

  • Cornelissen G, Gustafsson Ö, Bucheli TD, Jonker MTO, Koelmans AA, van Noort PCM (2005) Extensive sorption of organic compounds to black carbon, coal, and kerogens in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation and biodegradation. Environ Sci Technol 39:6881–6895

    CAS  Google Scholar 

  • Derraik JGB (2002) The pollution of the marine environment by plastic debris: A review. Mar Pollut Bull 44:842–852

    CAS  Google Scholar 

  • Dockery DW, Pope A III, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG, Speizer FE (1993) An association between air pollution and mortality in six US cities. New England J Med 329:1753–1759

    CAS  Google Scholar 

  • Doherty SJ, Warren SG, Grenfell TC, Clarke AD, Brandt RE (2010) Light absorbing impurities in Arctic snow. Atmos Chem Phys 10:11647–11680

    CAS  Google Scholar 

  • Doubleday N, Smol JP (2005) Atlas and classification scheme of arctic combustion particles suitable for paleoenvironmental work. J Paleolim 33:393–431

    Google Scholar 

  • Earle CJ, Brubaker LB, Anderson PM (1996) Charcoal in north-central Alaskan lake sediments: Relationships to fire and late-Quaternary vegetation history. Rev Palaeobot Palynol 92:83–95

    Google Scholar 

  • Elmquist M, Zencak Z, Gustafsson Ö (2007) A 700 year sediment record of black carbon and polycyclic aromatic hydrocarbons near the EMEP air monitoring station in Aspvreten, Sweden. Environ Sci Technol 41:6926–6932

    CAS  Google Scholar 

  • Elmquist M, Semiletov I, Guo L, Gustafsson Ö (2008) Pan-Arctic patterns in black carbon sources and fluvial discharges deduced from radiocarbon and PAH source apportionment markers in estuarine surface sediments. Glob Biogeochem Cycles 22:GB2018. doi:10.1029/2007GB002994

    Google Scholar 

  • Engler RE (2012) The complex interaction between marine debris and toxic chemicals in the ocean. Environ Sci Technol 46:12302–12315

    CAS  Google Scholar 

  • Esquivel EV, Murr LE (2004) A TEM analysis of nanoparticulates in a Polar ice core. Mater Charact 52:15–25

    CAS  Google Scholar 

  • Fernández P, Rose NL, Vilanova RM, Grimalt JO (2002) Spatial and temporal comparison of polycyclic aromatic hydrocarbons and spheroidal carbonaceous particles in remote European lakes. Wat Air Soil Pollut Focus 2:261–274

    Google Scholar 

  • Flanner MG, Zender CS, Randerson JT, Rasch PJ (2007) Present-day climate forcing and response from black carbon in snow. J Geophys Res 112:202. doi:10.1029/2006JD008003

    Google Scholar 

  • Flower RJ, Appleby PG, Thompson JR, Ahmed MH, Ramdani M, Chouba L, Rose NL, Rochester R, Ayache F, Fraiem MM, Elkhiati N, El Kafrawy S, Yang H, Rasmussen EK (2009) Sediment distribution and accumulation in lagoons of the Southern Mediterranean Region (the MELMARINA Project) with special reference to environmental change and aquatic ecosystems. Hydrobiologia 622:85–112

    CAS  Google Scholar 

  • Forsström S, Ström J, Pedersen CA, Isaksson E, Gerland S (2009) Elemental carbon distribution in Svalbard snow. J Geophys Res 114:D19112. doi:10.1029/2008JD011480

    Google Scholar 

  • Fott J, Vukic J, Rose NL (1998) The spatial distribution of characterized fly-ash particles and trace metals in lake sediments and catchment mosses: Czech Republic. Wat Air Soil Pollut 106:241–261

    CAS  Google Scholar 

  • Frid C, Dobson M (2013) Ecology of aquatic management, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Gelinas Y, Prentice KM, Baldock JA, Hedges JI (2001) An improved thermal oxidation method for the quantification of soot/graphitic black carbon in sediments and soils. Environ Sci Technol 35:3519–3525

    CAS  Google Scholar 

  • Ghio AJ, Silbajoris R, Carson JL, Samet JM (2002) Biologic effects of oil fly ash. Environ Health Perspect 110(Suppl 1):89–94

    Google Scholar 

  • Ghosh U, Zimmerman JR, Luthy RG (2003) PCB and PAH speciation among particle types in contaminated harbor sediments and effects on PAH bioavailability. Environ Sci Technol 37:2209–2217

    CAS  Google Scholar 

  • Glaser B, Haumaier L, Guggenberger G, Zech W (1998) Black carbon in soils: The use of benzene carboxylic acids as specific markers. Org Geochem 29:811–819

    CAS  Google Scholar 

  • Goldberg ED (1985) Black carbon in the environment. Wiley, New York

    Google Scholar 

  • Goldberg ED, Hodge VF, Griffin JJ, Koide M, Edgington DN (1981) Impact of fossil fuel combustion on the sediments of Lake Michigan. Environ Sci Technol 15:466–471

    CAS  Google Scholar 

  • Graseby SE, Sanei H, Beauchamp B (2011) Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nat Geosci 4:104–107

    Google Scholar 

  • Grieshop AP, Reynolds CCO, Kandlikar M, Dowlatabadi H (2009) A black-carbon mitigation wedge. Nat Geosci 2:533–534

    CAS  Google Scholar 

  • Griffin JJ, Goldberg ED (1979) Morphologies and origin of elemental carbon in the environment. Science 206:563

    CAS  Google Scholar 

  • Griffin JJ, Goldberg ED (1981) Sphericity as a characteristic of solids from fossil-fuel burning in a Lake Michigan sediment. Geochim Cosmochim Acta 45:763–769

    CAS  Google Scholar 

  • Griffitt RJ, Luo J, Gao J, Bonzongo J-C, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978

    CAS  Google Scholar 

  • Guazzotti SA, Coffee KR, Prather KA (2001) Continuous measurements of size-resolved particle chemistry during INDOEX-Intensive Field Phase 99. J Geophys Res 106:28607–28628

    CAS  Google Scholar 

  • Gustafsson Ö, Gschwend PM (1998) The flux of black carbon to surface sediments on the New England continental shelf. Geochim Cosmochim Acta 62:465–472

    CAS  Google Scholar 

  • Gustafsson Ö, Haghseta F, Chan C, Macfarlane J, Gschwend PM (1997) Quantification of the dilute sedimentary soot phase: Implications for PAH speciation and bioavailability. Environ Sci Technol 31:203–209

    CAS  Google Scholar 

  • Gustafsson Ö, Bucheli TD, Kukulska Z, Andersson M, Largeau C, Rounzaud J-N, Reddy CM, Eglinton TI (2001) Evaluation of a protocol for the quantification of black carbon in sediments. Glob Biogeochem Cycles 15:881–890

    CAS  Google Scholar 

  • Haberle SD, Hope GS, van der Kaars S (2001) Biomass burning in Indonesia and Papua New Guinea: Natural and human induced fire events in the fossil record. Palaeogeog Palaeoclim Palaeoecol 171:259–268

    Google Scholar 

  • Hadley OL, Corrigan CE, Kirchstetter TW, Cliff SS, Ramanathan V (2010) Measured black carbon deposition on the Sierra Nevada snow pack and implication for snow pack retreat. Atmos Chem Phys 10:7505–7513

    CAS  Google Scholar 

  • Hammes K, Schmidt MWI, Smernik RJ, Currie LA, Ball WP, Nguyen TH, Louchouarn P, Houel S, Gustafsson Ö, Elmquist M, Cornelissen G, Skjemstad JO, Masiello CA, Song J, Peng P, Mitra S, Dunn JC, Hatcher PG, Hockaday WC, Smith DM, Hartkopf-Fröder C, Böhmer A, Lüer B, Huebert BJ, Amelung W, Brodowski S, Huang L, Zhang W, Gschwend PM, Flores-Cervantes DX, Largeau C, Rouzaud J-N, Rumpel C, Guggenberger G, Kaiser K, Rodionov A, Gonzalez-Vila FJ, Gonzalez-Perez JA, de la Rosa JM, Manning DAC, López-Capél E, Ding L (2007) Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochem Cycles 21:GB3016. doi:10.1029/2006GB002914

    Google Scholar 

  • Handy RL, Davidson DT (1959) On the curious resemblance between fly-ash and meteoritic dust. Iowa Acad Sci 60:373–379

    Google Scholar 

  • Hansen J, Nazarenko L (2004) Soot climate forcing via snow and ice albedos. Proc Nat Acad Sci U S A 101:423–428

    CAS  Google Scholar 

  • Harvey MC, Brassel SC, Belcher CM, Montanari A (2008) Combustion of fossil organic matter at the Cretaceous-Paleogene (K-P) boundary. Geology 36:355–358

    Google Scholar 

  • Hedges JI, Eglinton G, Hatcher PG, Kirchman DL, Arnosti C, Derenne S, Evershed RP, Kögel-Knabner I, de Leeuw JW, Littke R, Michaelis W, Rullkötter J (2000) The molecularly-uncharacterized component of non-living organic matter in natural environments. Org Geochem 31:945–958

    CAS  Google Scholar 

  • Hegg DA, Warren SG, Grenfell TC, Doherty SJ, Clarke AD (2010) Source of light absorbing aerosol in arctic snow and their seasonal variation. Atmos Chem Phys 10:10923–10938

    CAS  Google Scholar 

  • Hicks S, Isaksson E (2006) Assessing source areas of pollutants from studies of fly ash, charcoal, and pollen from Svalbard snow and ice. J Geophys Res 111:D02113. doi:10.1029/2005JD006167

    Google Scholar 

  • Higuera PE, Brubaker LB, Anderson PM, Hu FS, Brown TA (2009) Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range. Alaska Ecol Monograph 79:201–219

    Google Scholar 

  • Hirdman D, Sodemann H, Eckhardt S, Burkhart JF, Jefferson A, Mefford T, Quinn PK, Sharma S, Ström J, Stohl A (2010) Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output. Atmos Chem Phys 10:669–693

    CAS  Google Scholar 

  • Hitzenberger R, Tohno S (2001) Comparison of black carbon (BC) aerosols in two urban areas—concentrations and size distributions. Atmos Environ 35:2153–2167

    CAS  Google Scholar 

  • Hodge PW, Wright FW (1964) Studies of particles for extraterrestrial origin 2. A comparison of microscopic spherules of meteoritic and volcanic origin. J Geophys Res 69:2449–2454

    CAS  Google Scholar 

  • Hodgson S, Khaw F-M, Pearce MS, Pless-Mulloli T (2009) Predicting black smoke levels from deposit gauge and SO2 data to estimate long-term exposure in the United Kingdom, 1956–1961. Atmos Environ 43:3356–3363

    CAS  Google Scholar 

  • Holmes LA, Turner A, Thompson RC (2011) Adsorption of trace metals to plastic resin pellets in the marine environment. Environ Pollut 160:42–48

    Google Scholar 

  • Hope G (2009) Environmental change and fire in the Owen Stanley Ranges, Papua New Guinea. Quat Sci Rev 28:2261–2276

    Google Scholar 

  • Hu X, Liu J, Mayer P, Jiang G (2008) Impacts of some environmentally relevant parameters on the sorption of polycyclic aromatic hydrocarbons to aqueous suspensions of fullerene. Environ Toxicol Chem 27:1868–1874

    CAS  Google Scholar 

  • Husain L, Khan AJ, Ahmed T, Swami K, Bari A, Webber JS, Li J (2008) Trends in atmospheric elemental carbon from 1835 to 2005. J Geophys Res 113:D13102. doi:10.1029/2007JD009398

    Google Scholar 

  • Imhof HK, Schmid J, Niessner R, Ivleva NP, Laforsch C (2012) A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments. Limnol Oceanogr Methods 10:524–537

    CAS  Google Scholar 

  • Isaksson E, Hermanson MH, Hicks S, Igarashi M, Kamiyama K, Moore J, Motoyama H, Muir D, Pohjola V, Vaikmäe R, van de Wal RSW, Watanabe O (2003) Ice cores from Svalbard—useful archives of past climate and pollution history. Phys Chem Earth 28:1217–1228

    Google Scholar 

  • Jacobson MZ (2001) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409:695–697

    CAS  Google Scholar 

  • Janssen NAH, Gerlofs-Nijland ME, Lanki T, Salonen RO, Cassee F, Hoek G, Fischer P, Brunekreef B, Krzyzanowski M (2012) Health effects of black carbon. Copenhagen, World Health Organisation Regional Office for Europe, 86 p

    Google Scholar 

  • Jenk TM, Szidat S, Schwikowski M, Gäggeler HW, Brütsch S, Wacker L, Synal H-A, Saurer M (2006) Radiocarbon analysis in an Alpine ice core: Record of anthropogenic and biogenic contributions to carbonaceous aerosols in the past (1650–1940). Atmos Chem Phys 6:5381–5390

    CAS  Google Scholar 

  • Junkermann W, Vogel B, Sutton MA (2011) The climate penalty for clean fossil fuel combustion. Atmos Chem Phys 11:12917–12924

    CAS  Google Scholar 

  • Kaneyasu N, Murayama S (2000) High concentrations of black carbon over middle latitudes in the North Pacific Ocean. J Geophys Res 105:19881–19890

    CAS  Google Scholar 

  • Karls JF, Christensen ER (1998) Carbon particles in dated sediments from Lake Michigan, Green Bay, and tributaries. Environ Sci Technol 32:225–231

    CAS  Google Scholar 

  • Kaspari SD, Schwikowski M, Gysel M, Flanner MG, Kang S, Hou S, Mayewski PA (2011) Recent increase in black carbon concentrations from a Mt. Everest ice core spanning 1860–2000 AD. Geophys Res Lett 38:L04703. doi:10.1029/2010GL046096

    Google Scholar 

  • Kennedy IM (1997) Models of soot formation and oxidation. Prog Energy Combust Sci 23:95–132

    CAS  Google Scholar 

  • Khin MM, Nair S, Babu VJ, Murugan R, Ramakrishna S (2012) A review of nanomaterials for environmental remediation. Energy Environ Sci 5:8075–8109

    CAS  Google Scholar 

  • Klaine SJ (2009) Considerations for research on the environmental fate and effects of nanoparticles. Environ Toxicol Chem 28:1787–1798

    CAS  Google Scholar 

  • Koch D, Hansen J (2005) Distant origins of Arctic black carbon: a goddard institute for space studies model experiment. J Geophys Res 110:D04204. doi:10.1029/2004JD005296

    Google Scholar 

  • Kralovec AC, Christensen ER, van de Camp RP (2002) Fossil fuel and wood combustion as recorded by carbon particles in Lake Erie sediments 1850–1998. Environ Sci Technol 36:1405–1413

    CAS  Google Scholar 

  • Künzi L, Mertes P, Schneider S, Jeannet N, Menzi C, Dommen J, Baltensperger U, Prévôt ASH, Salathe M, Kalberer M, Geiser M (2013) Responses of lung cells to realistic exposure of primary and aged carbonaceous aerosols. Atmos Environ 68:143–150

    Google Scholar 

  • Kuoppamaa M, Goslar T, Hicks S (2009) Pollen accumulation rates as a tool for detecting land-use changes in a sparesly settled boreal forest. Vegetat Hist Archaeobot 18:205–217

    Google Scholar 

  • Kwadijk CJAF, Velzeboer I, Koelmans AA (2013) Sorption of perflurooctane sulfonate to carbon nanotubes in aquatic sediments. Chemosphere 90:1631–1636

    CAS  Google Scholar 

  • Landers DH, Simonich SM, Jaffe DA, Geiser L, Campbell DH, Schwindt A, Schreck C, Kent M, Hafner W, Taylor HE, Hageman KJ, Usenko S, Ackerman L, Schrlau J, Rose NL, Blett T, Erway MM (2010) The Western Airborne Contaminant Assessment Project (WACAP): An interdisciplinary evaluation of the impacts of airborne contaminants in Western U. S. national parks. Environ Sci Technol 44:855–859

    CAS  Google Scholar 

  • Lavanchy VMH, Gäggler HW, Schotterer U, Schwikowski M, Baltensperger U (1999) Historical record of carbonaceous particle concentrations from a European high-alpine glacier (Colle Gnifetti, Switzerland). J Geophys Res 104:21227–21236

    CAS  Google Scholar 

  • Law KL, Morét-Ferguson S, Maximenko NA, Proskurowski G, Peacock EE, Hafner J, Reddy CM (2010) Plastic accumulation in the North Atlantic subtropical gyre. Science 329:1185–1188

    CAS  Google Scholar 

  • Lawrence MG (2011) Asia under a high-level brown cloud. Nat Geosci 4:352–353

    CAS  Google Scholar 

  • Lefèvre R, Gaudichet A, Billon-Galland MA (1986) Silicate microspherules intercepted in the plume of Etna volcano. Nature 322:817–820

    Google Scholar 

  • Legrand M, Preunkert S, Schock M, Cerqueira M, Kasper-Giebl A, Afonso J, Pio C, Gelencsér A, Dombrowski-Etchevers I (2007) Major 20th century changes of carbonaceous aerosol components (EC, WinOC, DOC, HULIS, carboxylic acids, and cellulose) derived from Alpine ice cores. J Geophys Res 112:D23S11. doi:10.1029/2006JD008080

    Google Scholar 

  • Lohmann R, Macfarlane JK, Gschwend PM (2005) Importance of black carbon to sorption of native PAHs, PCBs, and PCDDs in Boston and New York Harbor sediments. Environ Sci Technol 39:141–148

    CAS  Google Scholar 

  • Löndahl J, Swietlicki E, Lindgren E, Loft S (2010) Aerosol exposure versus aerosol cooling for climate: What is the optimal emission reduction strategy for human health? Atmos Chem Phys 10:9441–9449

    Google Scholar 

  • Louchouarn P, Chillrud SN, Houel S, Yan B, Chaky D, Rumpel C, Largeau C, Bardoux G, Walsch D, Bopp RF (2007) Elemental and molecular evidence of soot- and char-derived black carbon inputs to New York City’s atmosphere during the 20th century. Environ Sci Technol 41:82–87

    CAS  Google Scholar 

  • Machol B, Rizk S (2013) Economic value of U.S. fossil fuel electricity health impacts. Environ Int 52:75–80

    Google Scholar 

  • Martins CC, Bicego MC, Rose NL, Taniguchi S, Lourenço RA, Figueira RCL, Mahiques MM, Montone RC (2010) Historical record of polycyclic aromatic hydrocarbons (PAHs) and spheroidal carbonaceous particles (SCPs) in marine sediment cores from Admiralty Bay, King George Island, Antarctica. Environ Pollut 158:192–200

    CAS  Google Scholar 

  • Masiello CA (2004) New directions in black carbon organic geochemistry. Mar Chem 92:201–213

    CAS  Google Scholar 

  • Masiello CA, Druffel ERM (1998) Black carbon in deep-sea sediments. Science 280:1911–1913

    CAS  Google Scholar 

  • Mato Y, Isobe T, Takada H, Kanehiro H, Ohtake C, Kaminuma T (2001) Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ Sci Technol 35:318–324

    CAS  Google Scholar 

  • McConnell JR, Edwards R, Kok GL, Flanner MG, Zender CS, Salzman ES, Banta JR, Pasteris DR, Carter MM, Kahl JDW (2007) 20th century industrial black carbon emissions altered Arctic climate forcing. Science 317:1381–1384

    CAS  Google Scholar 

  • Meo SB, Andrews R (2001) Carbon nanotubes: Synthesis, properties and applications. Crit Rev Solid State Mat Sci 26:145–249

    Google Scholar 

  • Middelburg JJ, Nieuwenhuize J, van Breugel P (1999) Black carbon in marine sediments. Mar Chem 65:245–252

    CAS  Google Scholar 

  • Miller RJ, Bennett S, Keller AA, Pease S, Lenihan HS (2012) TiO2 nanoparticles are phototoxic to marine phytoplankton. PLoS ONE 7:e30321. doi:10.1371/journal.pone.0030321

    CAS  Google Scholar 

  • MINChar (2008) Recommended minimum physical and chemical parameters for characterizing nanomaterials on toxicology studies. http://characterizationmatters.files.wordpress.com/2008/11/minchar-parameters-list.pdf. Accessed 21 Feb 2013

  • Ming J, Cachier H, Xiao C, Qin D, Kang S, Hou S, Xu J (2008) Black carbon record based on a shallow Himalayan ice core and its climatic implications. Atmos Chem Phys 8:1343–1352

    CAS  Google Scholar 

  • Misra SK, Dybowska A, Berhanu D, Luoma SN, Valsami-Jones E (2012) The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci Total Environ 438:225–232

    CAS  Google Scholar 

  • Mitra S, Bianchi TS, McKee BA, Sutula M (2002) Black carbon from Mississippi River: Quantities, sources, and potential implications for the global carbon cycle. Environ Sci Technol 36:2296–2302

    CAS  Google Scholar 

  • Muri G, Wakeham SG, Rose NL (2006) Records of atmospheric delivery of pyrolysis derived pollutants in recent mountain lake sediments of the Julian Alps (NW Slovenia). Environ Pollut 139:461–468

    CAS  Google Scholar 

  • Murr LE, Garza KM (2009) Natural and anthropogenic environmental nanoparticulates: Their microstructural characterisation and respiratory health implications. Atmos Environ 43:2683–2692

    CAS  Google Scholar 

  • Murr LE, Esquivel EV, Bang JJ, de la RG, Gardea-Torresdey JL (2004) Chemistry and nanoparticulate compositions of a 10,000 year-old ice core melt water. Water Res 38:4282–4296

    CAS  Google Scholar 

  • Mwangi JN, Wang N, Ingersoll CG, Hardesty DK, Brunson EL, Li H, Deng B (2012) Toxicity of carbon nanotubes to freshwater aquatic invertebrates. Environ Toxicol Chem 31:1823–1830

    CAS  Google Scholar 

  • Nagafuchi O, Rose NL, Hoshika A, Satake K (2009) The temporal record and sources of atmospherically deposited fly-ash particles in Lake Akagi-konuma, a Japanese mountain lake. J Paleolimnol 42:359–371

    Google Scholar 

  • Natusch DFS, Wallace JR (1974) Toxic trace elements: Preferential concentration in respirable particles. Science 183:202–204

    CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao A-J, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants and fungi. Ecotoxicology 17:372–386

    CAS  Google Scholar 

  • Nelle O, Robin V, Talon B (2013) Pedoanthracology: Analysing soil charcoal to study Holocene palaeoenvironments. Quat Int 289:1–4

    Google Scholar 

  • Ng KL, Obbard JP (2005) Prevalence of microplastics in Singapore’s coastal marine environment. Mar Pollut Bull 52:761–767

    Google Scholar 

  • Novakov T (1984) The role of soot and primary oxidants in atmospheric chemistry. Sci Total Environ 36:1–10

    CAS  Google Scholar 

  • Novakov T, Ramanathan V, Hansen JE, Kirchstetter TW, Sato M, Sinton JE, Sathaye JA (2003) Large historical changes of fossil-fuel black carbon aerosols. Geophys Res Lett 30:1324. doi:10.1029/2002GL016345

    Google Scholar 

  • O’Brine T, Thompson RC (2010) Degradation of plastic carrier bags in the marine environment. Mar Pollut Bull 60:2279–2283

    Google Scholar 

  • Odgaard BV (1993) The sedimentary record of spheroidal carbonaceous fly-ash particles in shallow Danish lakes. J Paleolimnol 8:171–187

    Google Scholar 

  • Ognjanova-Rumenova N, Botev I, Velle G, Rose NL, Appleby PG, Brancelj A, Lami A, Musazzi S (2009) Environmental changes in the Rila Mountains, south-western Bulgaria, as recorded by the sediments of a remote lake. Adv Limnol 62:295–318

    CAS  Google Scholar 

  • Ogren JA, Charlson RJ (1983) Elemental carbon in the atmosphere: Cycle and lifetime. Tellus 35B:241–254

    CAS  Google Scholar 

  • Painter TH, Flanner MG, Kaser G, Marzeion B, VanCuren RA, Abdalati W (2013) End of the Little Ice Age in the Alps forced by industrial black carbon. PNAS. doi:10.1073/pnas.1302570110

    Google Scholar 

  • Parliamentary Office of Science and Technology (1996) Fine particles and health. POST Technical Report 82, London, 12 p

    Google Scholar 

  • Patterson WA III, Edwards KJ, Maguire DJ (1987) Microscopic charcoal as a fossil indicator of fire. Quat Sci Rev 6:3–23

    Google Scholar 

  • Pearce D, Crowards T (1996) Particulate matter and human health in the United Kingdom. Energy Pol 24:609–619

    Google Scholar 

  • Persson NJ, Gustafsson Ö, Bucheli TD, Ishaq R, Næs K, Broman D (2002) Soot-carbon influenced distribution of PCDD/Fs in the marine environment of the Grenlandsfjords, Norway. Environ Sci Technol 36:4968–4974

    CAS  Google Scholar 

  • Petersen EJ, Akkanen J, Kukkonen JVK, Weber WJ Jr (2009) Biological uptake and depuration of carbon nanotubes by Daphnia magna. Environ Sci Technol 43:2969–2975

    CAS  Google Scholar 

  • Pichler T, Nicolussi K, Goldenburg G, Hanke K, Kovács K, Thurner A (2013) Charcoal from a prehistoric copper mine in the Austrian Alps: Dendrochronological and dendrological data, demand for wood and forest utilisation. J Arch Sci 40:992–1002

    CAS  Google Scholar 

  • Pires I, Quintino L, Miranda RM, Gomes JFP (2006) Fume emissions during gas metal arc welding. Toxicol Environ Chem 88:385–394

    CAS  Google Scholar 

  • Pope CA III, Dockery DW (1992) Acute health effects of PM10 pollution on symptomatic and asymptomatic children. Am Rev Respirat Dis 145:1123–1128

    Google Scholar 

  • Pope A III, Dockery DW (2006) Health effects of fine particulate air pollution: Lines that connect. J Air Waste Manage Assoc 56:709–742

    CAS  Google Scholar 

  • Pope CA III, Dockery DW, Spengler JD, Raizenne ME (1991) Respiratory health and PM10 pollution. A daily time series analysis. Am Rev Respirat Dis 144:668–674

    Google Scholar 

  • Pope CA III, Thun MJ, Namboodiri MM, Dockery DW, Evans JS, Speizer FE, Heath CW Jr (1995) Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am J Respirat Crit Care Med 151:669–674

    Google Scholar 

  • Pope A III, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J Am Med Assoc 287:1132–1141

    CAS  Google Scholar 

  • Querol X, Parés JM, Plana F, Fernández-Turiel JL, López-Soler A (1993) Fly ash content and distribution in lake sediments around a large power station: Inferences from magnetic susceptibility analysis. Environ Geochem Health 15:9–18

    Google Scholar 

  • Quinn PK, Stohl A, Arneth A, Berntsen T, Burkhart JF, Christensen J, Flanner M, Kupiainen K, Lihavainen H, Shepherd M, Shevchenko V, Skov H, Vestreng V (2011) The impact of black carbon on Arctic climate. Arctic Monitoring and Assessment Programme (AMAP), Oslo, 72 p

    Google Scholar 

  • Ramana MV, Ramanathan V, Feng Y, Yoon S-C, Kim S-W, Carmichael GR, Schauer JJ (2010) Warming influenced by the ratio of black carbon to sulphate and black carbon source. Nat Geosci 3:542–545

    CAS  Google Scholar 

  • Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1:221–227

    CAS  Google Scholar 

  • Ramanathan V, Crutzen PJ (2003) Atmospheric brown “clouds”. Atmos Environ 37:4033–4035

    CAS  Google Scholar 

  • Renberg I, Wik M (1984) Dating recent lake sediments by soot particle counting. Verh Internat Verein Limnol 22:712–718

    Google Scholar 

  • Renberg I, Wik M (1985) Soot particle counting in recent lake sediments. An indirect dating method. Ecol Bull 37:53–57

    Google Scholar 

  • Roemer WH, van Wijnen JH (2001) Differences among black smoke, PM10 and PM1.0 levels at urban measurement sites. Environ Health Perspect 109:151–154

    CAS  Google Scholar 

  • Rose NL (1990a) A method for the extraction of carbonaceous particles from lake sediments. J Paleolimnol 3:45–53

    Google Scholar 

  • Rose NL (1990b) A method for the selective removal of inorganic ash particles from lake sediments. J Paleolimnol 4:61–67

    Google Scholar 

  • Rose NL (1994) A note on further refinements to a procedure for the extraction of carbonaceous fly-ash particles from sediments. J Paleolimnol 11:201–204

    Google Scholar 

  • Rose NL (1996) Inorganic ash spheres as pollution tracers. Environ Pollut 91:245–252

    CAS  Google Scholar 

  • Rose NL (2001) Fly-ash particles. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Volume 2: Physical and geochemical methods. Kluwer Academic Publishers, Dordrecht, pp 319–349

    Google Scholar 

  • Rose NL (2008) Quality control in the analysis of lake sediments for spheroidal carbonaceous particles. Limnol Oceanogr Meth 6:172–179

    CAS  Google Scholar 

  • Rose NL, Appleby PG (2005) Regional applications of lake sediment dating by spheroidal carbonaceous particle analysis I. United Kingdom. J Paleolimnol 34:349–361

    Google Scholar 

  • Rose NL, Harlock S (1998) The spatial distribution of characterised fly-ash particles and trace metals in lake sediments and catchment mosses in the United Kingdom. Water Air Soil Pollut 106:287–308

    CAS  Google Scholar 

  • Rose NL, Juggins S (1994) A spatial relationship between carbonaceous particles in lake sediments and sulphur deposition. Atmos Environ 28:177–183

    CAS  Google Scholar 

  • Rose NL, Monteith DT (2005) Temporal trends in spheroidal carbonaceous particle deposition derived from annual sediment traps and lake sediment cores and their relationship with non-marine sulphate. Environ Pollut 137:151–163

    CAS  Google Scholar 

  • Rose NL, Yang H (2007) Temporal and spatial patterns of spheroidal carbonaceous particles (SCPs) in sediments, soils and deposition at Lochnagar. In: Rose NL (ed) Lochnagar: the natural history of a mountain lake. Developments in Paleoenvironmental Research. Springer, Dordrecht, pp 403–423

    Google Scholar 

  • Rose NL, Juggins S, Watt J (1996) Fuel-type characterisation of carbonaceous fly-ash particles using EDS-derived surface chemistries and its application to particles extracted from lake sediments. Proc Roy Soc Lond A 452:881–907

    CAS  Google Scholar 

  • Rose NL, Harlock S, Appleby PG (1999a) The spatial and temporal distributions of spheroidal carbonaceous fly-ash particles (SCP) in the sediment records of European mountain lakes. Wat Air Soil Pollut 113:1–32

    CAS  Google Scholar 

  • Rose NL, Juggins S, Watt J (1999b) The characterisation of carbonaceous fly-ash particles from major European fossil-fuel types and applications to environmental samples. Atmos Environ 33:2699–2713

    CAS  Google Scholar 

  • Rose NL, Flower RJ, Appleby PG (2003) Spheroidal carbonaceous particles (SCPs) as indicators of atmospherically deposited pollutants in North African wetlands of conservation importance. Atmos Environ 37:1655–1663

    CAS  Google Scholar 

  • Rose NL, Cogalniceanu D, Appleby PG, Brancelj A, Camarero L, Fernández P, Grimalt JO, Kernan M, Lami A, Musazzi S, Quiroz R, Velle G (2009) Atmospheric contamination and ecological changes inferred from the sediment record of Lacul Negru in the Retezat National Park, Romania. Fund Appl Limnol 64:319–350

    Google Scholar 

  • Rose NL, Jones VJ, Noon PE, Hodgson DA, Flower RJ, Appleby PG (2012) Long-range transport of pollutants to the Falkland Islands and Antarctica: Evidence from lake sediment fly-ash particle records. Environ Sci Technol 46:9881–9889

    CAS  Google Scholar 

  • Rosen MR (2015) Hydrology as a means for tracking long-term records. In: Blais JM, Rosen MR, Smol JP (eds) Environmental contaminants: using natural archives to track sources and long-term trends of pollution. Springer, Dordrecht, 519 p

    Google Scholar 

  • Rumpel C, Alexis M, Chabbi A, Chaplot V, Rasse DP, Valentin C, Mariotti A (2006) Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture. Geoderma 130:35–46

    CAS  Google Scholar 

  • Ruppel M, Lund MT, Grythe H, Rose NL, Weckström J, Korhola A (2013) Comparison of spheroidal carbonaceous particle (SCP) data with modelled atmospheric black carbon concentration and deposition, and air mass sources in northern Europe, 1850–2010. Adv Meteorol. doi:10.1155/2013/393926

    Google Scholar 

  • Sanchís J, Berrojalbiz N, Caballero G, Dachs J, Farré M, Barceló D (2012) Occurrence of aerosol-bound fullerenes in the Mediterranean sea atmosphere. Environ Sci Technol 46:1335–1343

    Google Scholar 

  • Sanei H (2015) Contaminants in marine sedimentary deposits from coal fly ash during the Permian Extinction. In: Blais JM, Rosen MR, Smol JP (eds) Environmental contaminants: using natural archives to track sources and long-term trends of pollution. Springer, Dordrecht, 519 p

    Google Scholar 

  • Schmidt MWI, Noack AG (2000) Black carbon in soils and sediments: Analysis, distribution, implications and current challenges. Glob Biochem Cycles 14:777–793

    CAS  Google Scholar 

  • Schmidt MWI, Skejstadt JO, Czimczic CI, Glaser B, Prentice KM, Gelinas Y, Kuhlbusch TAJ (2001) Comparative analysis of black carbon in soils. Glob Biogeochem Cycles 15:163–167

    CAS  Google Scholar 

  • Schwarz JP, Gao RS, Fahey DW, Thomson DS, Watts LA, Wilson JC, Reeves JM, Darbeheshti M, Baumgardner DG, Kok GL, Chung SH, Schulz M, Hendricks J, Lauer A, Kärcher B, Slowik JG, Rosenlof KH, Thompson TL, Langford AO, Loewenstein M, Aikin KC (2006) Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere. J Geophys Res 111:D16207. doi:10.1029/2006JD007076

    Google Scholar 

  • Scown TM, van Aerle R, Tyler CR (2010) Review: Do engineered nanoparticles pose a significant threat to the aquatic environment? Crit Rev Toxicol 40:653–670

    CAS  Google Scholar 

  • Seiler W, Crutzen PJ (1980) Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim Change 2:207–247

    CAS  Google Scholar 

  • Sharma S, Lavoué D, Cachier H, Barrie LA, Gong SL (2004) Long-term trends of the black carbon concentrations in the Canadian Arctic. J Geophys Res 109:D15203. doi:10.1029/2003JD004331

    Google Scholar 

  • Shindell D, Faluvegi G (2009) Climate response to regional radiative forcing during the twentieth century. Nat Geosci 2:294–300

    CAS  Google Scholar 

  • Shindell D, Kuylenstierna JCI, Vignati E, van Dingenen R, Amann M, Klimont Z, Anenberg SC, Muller N, Janssens-Maenhout G, Raes F, Schwartz J, Faluvegi G, Pozzoli L, Kupiainen K, Höglund-Isaksson L, Emberson L, Streets D, Ramanathan V, Hicks K, Oanh NTK, Milly G, Williams M, Demkine V, Fowler D (2012) Simultaneously mitigating near-term climate change and improving human health and food security. Science 335:183–189

    CAS  Google Scholar 

  • Skeie RB, Berntsen T, Myhre G, Pedersen CA, Strom J, Gerland S, Ogren JA (2011) Black carbon in the atmosphere and snow, from pre-industrial times until present. Atmos. Chem Phys 11:6809–6836. doi:10.5194/acp-11-6809-2011

    CAS  Google Scholar 

  • Smith CJ, Shaw BJ, Handy RD (2007) Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol 82:94–109

    CAS  Google Scholar 

  • Solovieva N, Jones VJ, Nazarova L, Brooks SJ, Birks HJB, Grytnes J-A, Appleby PG, Kauppila T, Kondratenok BM, Renberg I, Ponomarev V (2005) Palaeolimnological evidence for recent climatic change in lakes from the northern Urals, Arctic Russia. J Paleolimnol 33:463–482

    Google Scholar 

  • Solovieva N, Jones VJ, Birks HJB, Appleby P, Nazarova L (2008) Diatom responses to 20th century climate warming in lakes from the northern Urals. Russia Palaeogeogr Palaeoclim Palaeoecol 259:96–106

    Google Scholar 

  • Song J, Peng P, Huang W (2002) Black carbon and kerogen in soils and sediments. 1. Quantification and characterization. Environ Sci Technol 36:3960–3967

    CAS  Google Scholar 

  • Stephens M, Turner N, Sandberg J (2003) Particle identification by laser-induced incandescence in a solid-state laser cavity. Appl Optics 42:3726–3736

    CAS  Google Scholar 

  • Stoffyn-Egli P, Potter TM, Leonard JD, Pocklington R (1997) The identification of black carbon particles with the analytical scanning electron microscope: methods and initial results. Sci Tot Environ 198:211–223

    CAS  Google Scholar 

  • Stohl A (2006) Characteristics of atmospheric transport into the Arctic troposphere. J Geophys Res 111:D11306. doi:10.1029/2005JD006888

    Google Scholar 

  • Streets DG, Bond TC, Lee T, Jang C (2004) On the future of carbonaceous aerosol emissions. J Geophys Res 109:D24212. doi:10.1029/2004JD004902

    Google Scholar 

  • Thevenon F, Anselmetti FS (2007) Charcoal and fly-ash particles from Lake Lucerne sediments (Central Switzerland) characterized by image analysis: Anthropologic, stratigraphic and environmental implications. Quat Sci Rev 26:2631–2643

    Google Scholar 

  • Tsukuda S, Sugiyama M, Harita Y, Nishimura K (2006) Atmospheric phosphorus deposition in Ashiu, Central Japan—Source apportionment for the estimation of true input to a terrestrial ecosystem. Biogeochemistry 77:117–138

    CAS  Google Scholar 

  • United States Environmental Protection Agency (2012) Revised air quality standards for particulate pollution and updates to the Air Quality Index. www.epa.gov/pm/2012/decfsstandards.pdf. Accessed 6 Feb 2013

  • Utsunomiya S, Jensen KA, Keeler GJ, Ewing RC (2002) Uraninite and fullerene in atmospheric particulates. Environ Sci Technol 36:4943–4947

    CAS  Google Scholar 

  • Vannière B, Colombaroli D, Chapron E, Leroux A, Tinner W, Magny M (2008) Climate versus human-driven fire regimes in Mediterranean landscapes: The Holocene record of Lago sellʼAccesa (Tuscany, Italy). Quat Sci Rev 27:1181–1196

    Google Scholar 

  • von Gunten L, Grosjean M, Beer J, Grob P, Morales A, Urrutia R (2009) Age modelling of young non-varved lake sediments: Methods and limits. Examples from two lakes in central Chile. J Paleolimnol 42:401–412

    Google Scholar 

  • Warren SG, Wiscombe WJ (1980) A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. J Atmos Sci 37:2734–2745

    Google Scholar 

  • Watson JG, Chow JC, Chen L-WA (2005) Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol Air Qual Res 5:65–102

    CAS  Google Scholar 

  • Wey M-Y, Chao C-Y, Chen J-C, Yu L-J (1998) The relationship between the quantity of heavy metal and PAHs in fly-ash. J Air Waste Manage Assoc 48:750–756

    CAS  Google Scholar 

  • Whitlock C, Larsen CPS (2001) Charcoal as a fire proxy. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Volume 3: terrestrial, algal, and siliceous indicators. Kluwer Academic Publisher, Dordrecht, pp 75–97

    Google Scholar 

  • Willis KJ, Birks HJB (2006) What is natural? The need for a long-term perspective in biodiversity conservation. Science 314:1261–1265

    CAS  Google Scholar 

  • Wolbach WS, Lewis RS, Anders E (1985) Cretaceous extinctions: Evidence for wildfires and search for meteoritic material. Science 230:167–170

    CAS  Google Scholar 

  • World Health Organsiation Task Force on Health Aspects of Long Range Transboundary Air Pollution (1999) Health risk of particulate matter from long range transboundary air pollution. WHO, Bilthoven, 56 pp

    Google Scholar 

  • Xu B, Cao J, Hansen J, Yao T, Joswia DR, Wang N, Wu G, Wang M, Zhao H, Yang W, Liu X, He J (2009) Black soot and the survival of Tibetan glaciers. Proc Nat Acad Sci 106:22114–22118

    CAS  Google Scholar 

  • Yang H, Rose NL, Battarbee RW (2001) Dating of recent catchment peats using spheroidal carbonaceous particle (SCP) concentration profiles with particular reference to Lochnagar, Scotland. Holocene 11:593–597

    Google Scholar 

  • Yang X, Shen Z, Zhang B, Yang J, Hong W-X, Zhuang Z, Liu J (2013) Silica nanoparticles capture atmospheric lead: Implications in the treatment of environmental heavy metal pollution. Chemosphere 90:653–656

    CAS  Google Scholar 

  • Yim SHL, Barrett SRH (2012) Public health impacts of combustion emissions in the United Kingdom. Environ Sci Technol 46:4291–4296

    CAS  Google Scholar 

  • Yoshikawa S, Yamaguchi S, Hata A (2000) Paleolimnological investigation of recent acidity changes in Sawanoike Pond, Kyoto, Japan. J Paleolimnol 23:285–304

    Google Scholar 

  • Zarfl C, Matthies M (2010) Are marine plastic particles transport vectors for organic pollutants to the Arctic? Mar Pollut Bull 60:1810–1814

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Hansjörg Thies, Richard Bindler and the three editors of this volume for their comments on an earlier version of this chapter. We also thank Jérémie Beghin (Unité de Paléobiogéologie—Paléobotanique—Paléopalynologie, Département de Géologie, Université de Liège) for allowing us to use his data and micrograph in Fig. 1 and Miles Irving of the Cartographic Office, Department of Geography, University College London for redrawing a number of the Figures. MR acknowledges the NordForsk Top-Level Research Initiative Nordic Centre of Excellence CRAICC (Cryosphere-atmosphere interactions in a changing Arctic climate) for a fruitful working environment. MR’s work was funded by the Academy of Finland Project 257903.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil L. Rose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rose, N., Ruppel, M. (2015). Environmental Archives of Contaminant Particles. In: Blais, J., Rosen, M., Smol, J. (eds) Environmental Contaminants. Developments in Paleoenvironmental Research, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9541-8_9

Download citation

Publish with us

Policies and ethics