Skip to main content

Why Systems Biology Can Promote a New Way of Thinking

  • Chapter
  • First Online:
Systems and Synthetic Biology
  • 3319 Accesses

Abstract

This chapter deals with the effect Systems Biology had on the Nature of what we consider ‘an explanation’ in Biological Science. I try and demonstrate how the most relevant change carried out by Systems Biology approach was the shift from the molecular layer as the definitive place where causative process start to the elucidation of the among elements (at any level of biological organization they are located) interaction network as the main goal of scientific explanations. This change of perspective allows to dissipate a widespread idealistic nightmare looking at the single molecules as Maxwell-demon-like intelligent agents. The recognition that genes work in networks has as consequence the existence of discrete ‘allowed global modes’ of gene expression. This theoretical expectation was verified by the incredibly narrowspace of different tissues (each corresponding to a largely invariant gene expression profile)—around 200 tissue types for all the metazoans emerging from the transfinite number of possible combinations of the expression values of around 30,000 genes. This is a crucial step for generating a scientifically sound framework to address global biological regulation.

Systems Biology approach makes obsolete the debate between ‘reductionist’ and ‘holistic’ approach in favor of a ‘middle-out’ paradygm formally identical to the time honored chemical thought. This is probably the brightest promise of Systems Biology to scientific knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benigni R, Giuliani A (1994) Quantitative modeling and biology: the multivariate approach. Am J Physiol 266(35):R1697–R1704

    Google Scholar 

  • Catalani A, Alemà GS et al (2011) Maternal corticosterone effects on hypothalamus-pituitary-adrenal axis regulation and behavior of the offspring in rodents. Neurosci Biobehav Rev 7:1502–1517

    Article  Google Scholar 

  • Censi F, Giuliani A, Bartolini P et al (2011) A multiscale graph theoretical approach to gene regulation networks: a case study in atrial fibrillation. IEEE Trans Biomed Eng 58(10):2943–2946

    Article  PubMed  Google Scholar 

  • Csermely P, AgostonV, Pongor S (2005) The efficiency of multi-target drugs: the network approach might help drug design. Trends Phramacol Sci 26:178–182

    Article  CAS  Google Scholar 

  • Dill KA, Chan HS (1997) From Levinthal to pathways to funnels. Nat Struct Biol 4:10–19

    Article  CAS  PubMed  Google Scholar 

  • Di Paola L, De Ruvo M, Paci P, Santoni D, GiulianiA (2012) Protein contact networks: an emerging paradigm in chemistry. Chem Rev (in press)

    Google Scholar 

  • Felli N, Cianetti L, Pelosi E et al (2010) Hematopoietic differentiation: a coordinated dynamical process towards attractor stable states. BMC Syst Biol 4:85

    Article  PubMed Central  PubMed  Google Scholar 

  • Frauenfelder H, Sligar SG, Wolynes P (1991) The energy landscapes and motions of proteins. Science 254:1598–1603

    Article  CAS  PubMed  Google Scholar 

  • Fredenslund A, Gmehling J, Rasmussen P (1979) Vapor-liquid equilibria using UNIFAC: a group contribution method. Elsevier Scientific, NewYork

    Google Scholar 

  • Gerstein MB, Kundaje A, Hariharan M et al (2012) Architecture of the human regulatory network derived from ENCODE data. Nature 489:91–100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giuliani A (2010) Collective motions and specific effectors: a statistical mechanics perspective on biological regulation. BMC Genomics 11(Suppl 1):S2

    Google Scholar 

  • Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 11:682–690

    Article  Google Scholar 

  • Huang S (2009) Reprogramming cell fates: reconciling rarity with robustness. Bioessays 31:546–560

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Eichler G, Bar-Yam Y et al (2005) Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys Rev Lett 94:128701–12870 5

    Article  PubMed  Google Scholar 

  • Hyman AA, Simons K (2012) Beyond oil and water: phase transitions in cells. Science 337:1047–1049

    Article  CAS  PubMed  Google Scholar 

  • Ingber D (1999) How cells (might) sense microgravity. FASEB J 13 (Suppl):S13–S15

    Google Scholar 

  • Jordan B (2012) Are expression profiles meaningless for cancer studies? Bioessays 34:730–733

    Article  CAS  PubMed  Google Scholar 

  • Karsenti E (2008) Self organization in cell biology, a brief history. Nat Rev Mol Cell Biol 9:255

    Article  CAS  PubMed  Google Scholar 

  • Kauffman SA (1993) The origins of order. Oxford University, NewYork

    Google Scholar 

  • Laughlin RB, Pines D et al (2000) The middle way. Proc Natl Acad Sci U S A 97:32–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levinthal C (1969) How to fold graciously. In: De Brunner JTP, Munch E (eds) Mossbauer spectroscopy in biological systems. University of Illinois press, Illinois, pp 22–24

    Google Scholar 

  • MacFarlane RG (1964) An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature 202:498–499

    Article  CAS  PubMed  Google Scholar 

  • Malenka RC, Nicoll RA (1993) NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci 16(12):521–527

    Article  CAS  PubMed  Google Scholar 

  • Overington JP, Al-Lazikani B, Hopkins JL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996

    Article  CAS  PubMed  Google Scholar 

  • Palumbo MC, Colosimo A, Giuliani A, Farina L (2005) Functional essentiality from topology features in metabolic networks: a case study in yeast. FEBS Lett 579:4642–4646

    Article  CAS  PubMed  Google Scholar 

  • Palumbo MC, Colosimo A et al (2007) Essentiality is an emergent property of metabolic network wiring. FEBS Lett 581(13):2485–2489

    Article  CAS  PubMed  Google Scholar 

  • Russell D, Lasker K et al (2009) The structural dynamics of macromolecular processes. Curr Opin Cell Biol 21:97–108

    Article  Google Scholar 

  • Rzhetsky A, Iossifov I et al (2006) Microparadigms: chains of collective reasoning in publication about molecular interactions. Proc Natl Acad Sci U S A 103:4940–4945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sebastian JL, Munoz S et al (2001) Analysis of the influence of the cell geometry, orientation and cell proximity effects on the electric field distribution from direct RF exposure. Phys Med Biol 46:213–219

    Article  CAS  PubMed  Google Scholar 

  • Shakhnovic E (2006) Protein folding thermodynamics and dynamics: where physics, chemistry and biology meet. Chem Rev 106(5):1559–1588

    Article  Google Scholar 

  • Tompa P, Rose G (2011) The Levinthal paradox of interactome. Protein Sci 20:2074–2079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsuchiya M, Piras V, Giuliani A et al (2010) Collective dynamics of specific gene ensembles crucial for neutrophil differentiation: the existence of genome vehicles revealed. PLoS ONE 5(8):e12116

    Article  Google Scholar 

  • Tun K, Menghini M, D’Andrea L, Tanaka H, Dhar P, Giuliani A (2011) Why so few drug targets: a mathematical explanation? Curr Comput Aided Drug Des 7(3):206–213

    Article  CAS  PubMed  Google Scholar 

  • Venet D, Dumont JE, Detours V (2011) Most random gene expression signatures are significantly associated with breast cancer outcome. PLoS Comput Biol 7(10):e1002240

    Article  Google Scholar 

  • Von Dassow G, Meir E et al (2000) The segment polarity network is a robust developmental module. Nature 406:188–192

    Article  CAS  PubMed  Google Scholar 

  • Waddington CH (1957) The strategy of the genes: a discussion of some aspects of theoretical biology. Macmillan, NewYork

    Google Scholar 

  • Watts DJ, Strogatz SH (2004) Collective dynamics of ‘small world’ networks. Nat Rev Genet 5:101–113

    Article  Google Scholar 

  • Yamanaka S (2009) Elite and stochastic models for induced pluripotent stem cell generation. Nature 460:49–52

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka S, Blau HM (2010) Nuclear reprogramming to a pluri-potent state by three approaches. Nature 465:704–710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Giuliani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Giuliani, A. (2015). Why Systems Biology Can Promote a New Way of Thinking. In: Singh, V., Dhar, P. (eds) Systems and Synthetic Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9514-2_2

Download citation

Publish with us

Policies and ethics