Skip to main content

Plant Species Diversity Indicators for Use in the Computation of Critical Loads and Dynamic Risk Assessments

  • Chapter
  • First Online:
Critical Loads and Dynamic Risk Assessments

Part of the book series: Environmental Pollution ((EPOL,volume 25))

Abstract

Soil models can be used to derive critical loads by computing the deposition that leads to critical limits for abiotic conditions, i.e. conditions that are just tolerated by an ecosystem. In this chapter various approaches are discussed to assess these critical limits for plant communities and plant species. Species diversity indicators have an important role in many of these approaches and such indicators may be based on species numbers, intrinsic values of species or the desirability of certain species or communities to be present in certain locations. Such desired or ‘target’ species or communities are often derived from concepts regarding the ‘pristine’ or ‘natural’ state of an ecosystem. For a diversity indicator the similarity of the actual or modelled state and the ‘target’ state has to be quantified, and various methods for quantification are discussed. Finally, a step-by-step approach is discussed to arrive at critical limits using niche models, based on various concepts regarding plant species diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achermann, B., & Bobbink, R. (Eds.). (2003). Empirical critical loads for nitrogen: Expert workshop, Berne, 11–13 November 2002. Swiss Agency for the Environment, Forests and Landscape.

    Google Scholar 

  • Aerts, R., & Berendse, F. (1988). The effect of increased nutrient availability on vegetation dynamics in wet heathlands. Vegetatio, 76, 63–69.

    Google Scholar 

  • Baczkowski, A. J., Joanes, D. N., & Shamia, G. M. (1997). Properties of a generalized diversity index. Journal of Theoretical Biology, 188, 207–213.

    Article  Google Scholar 

  • Bal, D., Beije, H. M., Hoogeveen, Y. R., Jansen, S. R. J., & van de Reest, P. J. (1995). Handboek natuurdoeltypen in Nederland. (Rapport IKC-N 11). Wageningen: IKC-Natuurbeheer.

    Google Scholar 

  • Belyazid, S., Kurz, D., Braun, S., Sverdrup, H., Rihm, B., & Hettelingh, J. P. (2011). A dynamic modelling approach for estimating critical loads of nitrogen based on plant community changes under a changing climate. Environmental Pollution, 159, 789–801.

    Article  CAS  Google Scholar 

  • Bobbink, R., & Hettelingh, J.-P. (2011). Review and revision of empirical critical loads and dose-response relationships: Proceedings of an expert workshop, Noordwijkerhout, 23–25 June 2010. (Report 680359002/2011). Bilthoven: Coordination Centre for Effects, National Institute for Public Health and the Environment.

    Google Scholar 

  • Bobbink, R., Ashmore, M., Braun, S., Flückiger, W., & van den Wyngaert, I. J. J. (2003). Empirical nitrogen critical loads for natural and semi-natural ecosystems: 2002 update. In B. Achermann, & R. Bobbink (Eds.), Empirical critical loads for nitrogen (pp. 43–170). Berne: Swiss Agency for Environment, Forest and Landscape SAEFL.

    Google Scholar 

  • Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., Bustamante, M., Cinderby, S., Davidson, E., Dentener, F., Emmett, B., Erisman, J. W., Fenn, M., Gilliam, F., Nordin, A., Pardo, L., & De Vries, W. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 20, 30–59.

    Article  CAS  Google Scholar 

  • Bohn, U., Neuhäusl, R., Gollub, G., Hettwer, C., Neuhäuslová, Z., Raus, T., Schlüter, H., & Weber, H. (2004). Map of the Natural Vegetation of Europe scale 1: 2 500 000. Münster: Landwirtschaftsverlag.

    Google Scholar 

  • Braun-Blanquet, W. (1964). Pflanzensoziologie. Grundzüge der Vegetationskunde. (3. Aufl.). Wien: Springer.

    Book  Google Scholar 

  • Bray, R. J., & Curtis, J. T. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs, 27, 325–349.

    Article  Google Scholar 

  • Buckland, S. T., Magurran, A. E., Green, R. E., & Fewster, R. M. (2005). Monitoring change in biodiversity through composite indices. Philsophical Transactions of the Royal Society Biological Science, 360, 243–254 (London).

    Article  CAS  Google Scholar 

  • Connor, E. F., & McCoy, E. D. (1979). The statistics and biology of the species-area relationship. The American Naturalist, 113, 791–833.

    Article  Google Scholar 

  • Cover, T. M., & Thomas, J. A. (2012). Elements of information theory. Wiley Interscience.

    Google Scholar 

  • Davies, C. E., Moss, D., & Hill, M. O. (2004). EUNIS Habitat Classification revised 2004. European Environment Agency, European topic centre on nature protection and biodiversity.

    Google Scholar 

  • De Vries, W., Reinds, G. J., van Dobben, H., de Zwart, D., Posch, M., Voogd, J. C. H., Auee, J. & Vel, E. M. (2002). Intensive monitoring of forest ecosystems in Europe. Technical Report 2002. Geneva and Brussels: UN/ECE and EC, Forest Intensive Monitoring Coordinating Institute

    Google Scholar 

  • De Vries, W., Wamelink, G. W. W., van Dobben, H., Kros, J., Reinds, G. J., Mol-Dijkstra, J. P., Smart, S. M., Evans, C. D., Rowe, E. C., Belyazid, S., Sverdrup, H. U., van Hinsberg, A., Posch, M., Hettelingh, J.-P., Spranger, T., & Bobbink, R. (2010). Use of dynamic soil–vegetation models to assess impacts of nitrogen deposition on plant species composition: An overview. Ecological Applications, 20, 60–79.

    Article  CAS  Google Scholar 

  • Dise, N. B., Ashmore, M., Belyazid, S., Bleeker, A., Bobbink, R., De Vries, W., Erisman, J. W., van den Berg, L., Spranger, T., & Stevens, C. (2011). Nitrogen as a threat to European terrestrial biodiversity Chap. 20. In M. A. Sutton, C. M. Howard, J. W. Erisman, G. Billen, A. Bleeker, P. Grennfelt, H. van Grinsven, & B. Grizzetti (Eds.), The European Nitrogen Assessment (pp. 463–494). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • EC. (1992). Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Brussel: European Commision.

    Google Scholar 

  • EEA. (2003). An inventory of biodiversity indicators in Europe. Luxembourg: Office for Official Publications of the European Communities.

    Google Scholar 

  • EEA (European Environment Agency). (2007). Halting the loss of biodiversity by 2010: Proposal for a first set of indicators to monitor progress in Europe. (EEA Technical report 11/2007). Luxembourg: Office for Official Publications of the European Communities.

    Google Scholar 

  • Ellis, C. J., Yahr, R., & Coppins, B. J. (2011). Archaeobotanical evidence for a massive loss of epiphyte species richness during industrialization in southern England. Proceedings of the Royal Society B, 278, 3482–3489.

    Article  CAS  Google Scholar 

  • Galloway, J. N., & Cowling, E. B. (2002). Reactive nitrogen and the world: 200 years of change. Ambio, 31, 64–71.

    Google Scholar 

  • Hurlbert, S. H. (1971). The nonconcept of species diversity: A critique and alternative parameters. Ecology, 52, 577–586.

    Article  Google Scholar 

  • IUCN. (2012). IUCN Red List Categories and Criteria: Version 3.1. Second edition. Gland, Switzerland and Cambridge, UK: IUCN.

    Google Scholar 

  • Jenssen, M. (2009). Assessment of the effects of top-soil changes on plant species diversity in forest, due to nitrogen deposition. In J. P. Hettelingh, M. Posch, & J. Slootweg (Eds.), Progress in the modelling of critical thresholds, impacts to plant species diversity and ecosystem services in Europe (pp. 83–100). Bilthoven: Netherlands Environmental Assessment Agency.

    Google Scholar 

  • Lamb, E. G., Bayne, E., Holloway, G., Schieck, J., Boutin, S., Herbers, J., & Haughland, D. L. (2009). Indices for monitoring biodiversity change: Are some more effective than others? Ecological Indicators, 9, 432–444.

    Article  Google Scholar 

  • Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129, 271–280.

    Article  Google Scholar 

  • Legendre, P., & Legendre, L. (2012). Numerical ecology. Developments in environmental modelling Vol 24. Amsterdam: Elsevier.

    Google Scholar 

  • Margalef, R. (1963). On certain unifying principles in ecology. The American Naturalist, 97, 357–374.

    Article  Google Scholar 

  • McCann, K. S. (2000). The diversity—stability debate. Nature, 405, 228–233.

    Article  CAS  Google Scholar 

  • Mol-Dijkstra, J. P., & Kros, H. (2001). Modelling effects of acid deposition and climate change on soil and run-off chemistry at Risdalsheia, Norway. Hydrology and Earth System Sciences, 5, 487–498.

    Article  Google Scholar 

  • Odén, S. (1967). Nederbördens försurning. In Dagens Nyheter, October 24.

    Google Scholar 

  • Posch, M., & Reinds, G. J. (2009). A very simple dynamic soil acidification model for scenario analyses and target load calculations. Environmantal Modelling and Software, 24, 329–340.

    Article  Google Scholar 

  • Posch, M., Belyazid, S., Kurz, D., & Reinds, G. J. (2010). The VSD-Veg Model: Progress and Prospects. In J. Slootweg, M. Posch, & J.-P. Hettelingh (Eds.), Progress in the modelling of critical thresholds and dynamic modelling, including impacts on vegetation in Europe, CCE Status Report 2010 (pp. 49–54). Bilthoven: RIVM.

    Google Scholar 

  • Rowe, E. C., Emmett, B. A., & Smart, S. M. (2009). A single metric for defining biodiversity damage using Habitats Directive criteria. In J. -P. Hettelingh, M. Posch, & J. Slootweg (Eds.), Progress in the modelling of critical thresholds, impacts to plant species diversity and ecosystem services in Europe: CCE Status Report 2009 (pp. 101–107). Bilthoven: Coordination Centre for Effects.

    Google Scholar 

  • Sala, O. E., Chapin, F. S., III, Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D. M., Mooney, H. A., Oesterheld, M., LeRoy Poff, N., Sykes, M. T., Walker, B. H., Walker, M., & Wall, D. H. (2000). Global Biodiversity Scenarios for the Year 2100. Science, 287, 1770–1774.

    Article  CAS  Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 370–423, 623–656.

    Article  Google Scholar 

  • Simpson, E. (1949). Management of diversity. Nature, 163, 688.

    Article  Google Scholar 

  • Somerfield, P. J. (2008). Identification of the Bray-Curtis similarity index: Comment on Yoshioka (2008). Marine Ecology-Progress Series, 372, 303–306.

    Article  Google Scholar 

  • Stevens, C. J., Manning, P., van den Berg, L. J. L., de Graaf, M. C. C., Wamelink, G. W. W., Boxman, A. W., Bleeker, A., Vergeer, P., Arroniz-Crespo, M., Limpens, J., Lamers, L. P. M., Bobbink, R., & Dorland, E. (2011). Ecosystem responses to reduced and oxidised nitrogen inputs in European terrestrial habitats. Environmental Pollution, 159, 665–676.

    Article  CAS  Google Scholar 

  • Tilman, D. (1987). Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecological Monographs, 57, 189–214.

    Article  Google Scholar 

  • Ulrich, B., Mayer, R., & Khanna, P. K. (1979). Die Deposition von Luftverunreinigungen und ihre Auswirkungen in Waldokosystemen im Solling. Schriften aus der Forstl. Fak. D. Univ. Göttingen und der Nierders. Vers. Anst. Bd. 58.

    Google Scholar 

  • Van Adrichem, M. H. C., Wortelboer, F. G., & Wamelink, G. W. W. (2010). MOVE: MOdel for terrestrial VEgetation version 4.0. (WOT werkdocument 153). Wageningen: Wettelijke Onderzoekstaken Natuur & Milieu.

    Google Scholar 

  • Van Dobben, H. F. (2011). Naar eenvoudige dosis-effectrelaties tussen natuur- en milieucondities; een toetsing van de mogelijkheden van de Natuurplanner. (WOt-werkdocument 282). Wageningen: Wettelijke Onderzoekstaken Natuur & Milieu.

    Google Scholar 

  • Van Dobben, H. F., & Slim, P. A. (2012). Past and future plant diversity of a coastal wetland driven by soil subsidence and climate change. Climatic Change, 110, 597–618.

    Article  Google Scholar 

  • Van Dobben, H., & Wamelink, W. (2009). A Red-List-based biodiversity indicator and its application in model studies in the Netherlands. In J.-P. Hettelingh, M. Posch, & J. Slootweg (Eds.), Progress in the modelling of critical thresholds, impacts to plant species diversity and ecosystem services in Europe: CCE Status Report 2009 (pp. 77–81). Bilthoven: Coordination Centre for Effects.

    Google Scholar 

  • Van Dobben, H., Hettelingh, J. P., De Vries, W., Slootweg, J. & Reinds, G. J. (2010). Plant species diversity indicators for impacts of nitrogen and acidity and methods for their simulation: An overview. In J. Slootweg, M. Posch, & J. P. Hettelingh (Eds.), CCE Status Report 2010.

    Google Scholar 

  • Van Tongeren, O., Gremmen, N., & Hennekens, S. (2008). Assignment of relevés to pre-defined classes by supervised clustering of plant communities using a new composite index. Journal of Vegetation Science, 19, 525–536.

    Article  Google Scholar 

  • Wamelink, G. W. W., ter Braak, C. F. J., & van Dobben, H. F. (2003). Changes in large-scale patterns of plant biodiversity predicted from environmental economic scenarios. Landscape Ecology, 18, 513–527.

    Article  Google Scholar 

  • Wamelink, G. W. W., Goedhart, P. W., van Dobben, H. F., & Berendse, F. (2005). Plant species as predictors of soil pH: Replacing expert judgement with measurements. Journal of Vegetation Science, 16, 461–470.

    Article  Google Scholar 

  • Wamelink, G. W. W., Goedhart, P. W., Malinowska, A. H., Frissel, J. Y., Wegman, R. J. M., Slim, P. A., & van Dobben, H. F. (2011). Ecological ranges for the pH and NO3 of syntaxa: A new basis for the estimation of critical loads for acid and nitrogen deposition. Journal of Vegetation Science, 22, 741–749.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han F van Dobben .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dobben, H., Posch, M., Wamelink, G., Hettelingh, JP., Vries, W. (2015). Plant Species Diversity Indicators for Use in the Computation of Critical Loads and Dynamic Risk Assessments. In: de Vries, W., Hettelingh, JP., Posch, M. (eds) Critical Loads and Dynamic Risk Assessments. Environmental Pollution, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9508-1_3

Download citation

Publish with us

Policies and ethics