Skip to main content

Use of Combined Biogeochemical Model Approaches and Empirical Data to Assess Critical Loads of Nitrogen

  • Chapter
  • First Online:
Critical Loads and Dynamic Risk Assessments

Abstract

Empirical and dynamic biogeochemical modelling are complementary approaches for determining the critical load (CL) of atmospheric nitrogen (N) or other constituent deposition that an ecosystem can tolerate without causing ecological harm. The greatest benefits are obtained when these approaches are used in combination. Confounding environmental factors can complicate the determination of empirical CLs across depositional gradients, while the experimental application of N amendments for estimating the CL does not realistically mimic the effects of chronic atmospheric N deposition. Biogeochemical and vegetation simulation models can provide CL estimates and valuable ecosystem response information, allowing for past and future scenario testing with various combinations of environmental factors, pollutants, pollutant control options, land management, and ecosystem response parameters. Even so, models are fundamentally gross simplifications of the real ecosystems they attempt to simulate. Empirical approaches are vital as a check on simulations and CL estimates, to parameterize models, and to elucidate mechanisms and responses under real world conditions. In this chapter, we provide examples of empirical and modelled N CL approaches in ecosystems from three regions of the United States: mixed conifer forest, desert scrub and pinyon-juniper woodland in California; alpine catchments in the Rocky Mountains; and lakes in the Adirondack region of New York state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber, J. D., Ollinger, S. V., & Driscoll, C. T. (1997). Modelling nitrogen saturation in forest ecosystems in response to land use and atmospheric deposition. Ecological Modelling, 101, 61–78.

    Article  Google Scholar 

  • Aber, J. D., Goodale, C. L., Ollinger, S. V., Smith, M.-L., Magill, A. H., Martin, M. E., Hallett, R. A., & Stoddard, J. L. (2003). Is nitrogen deposition altering the nitrogen status of Northeastern forests? Bioscience, 53, 375–389.

    Article  Google Scholar 

  • Allen, E. B., Rao, L. E., Steers, R. J., Bytnerowicz, A., & Fenn, M. E. (2009). Impacts of atmospheric nitrogen deposition on vegetation and soils in Joshua Tree National Park. In R. H. Webb, L. F. Fenstermaker, J. S. Heaton, D. L. Hughson, E. V. McDonald, & D. M. Miller (Eds.), The Mojave desert: Ecosystem processes and sustainability (pp. 78–100). Las Vegas: University of Nevada Press.

    Google Scholar 

  • Anderson, H. E. (1982). Aids to determining fuel models for estimating fire behavior. (General Technical Report INT-122). Ogden, Utah: USDA Forest Service Intermountain Forest and Range Experiment Station.

    Google Scholar 

  • Baron, J. S. (2006). Hindcasting nitrogen deposition to determine an ecological critical load. Ecological Applications, 16, 433–439.

    Article  Google Scholar 

  • Baron, J. S., Ojima, D. S., Holland, E. A., & Parton, W. J. (1994). Analysis of nitrogen saturation potential in Rocky Mountain tundra and forest: Implications for aquatic systems. Biogeochemistry, 27, 61–82.

    Article  Google Scholar 

  • Baron, J. S., Driscoll, C. T., Stoddard, J. L., & River, E. E. (2011a). Empirical critical loads of atmospheric nitrogen deposition for nutrient enrichment and acidification of sensitive US Lakes. Bioscience, 61, 602–613.

    Article  Google Scholar 

  • Baron, J. S., Driscoll, C. T., & Stoddard, J. L. (2011b). Inland surface waters. In L. H. Pardo, M. J. Robin-Abbott, & C. T. Driscoll (Eds.), Assessment of N deposition effects and empirical critical loads of nitrogen for ecoregions of the United States. General technical report NRS-80 (pp. 209–228). Newtown Square: U.S. Department of Agriculture, Forest Service, Northern Research Station.

    Google Scholar 

  • Bergström, A.-K., & Jannson, M. (2006). Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Global Change Biology, 12, 635–643.

    Article  Google Scholar 

  • Bowman, W. D., Gatner, J. R., Holland, K., & Wiedermann, M. (2006). Nitrogen critical loads for alpine vegetation and terrestrial ecosystem response: Are we there yet? Ecological Applications, 16, 1183–1193.

    Article  Google Scholar 

  • Brooks, M. L., & Minnich, R. A. (2006). Southeastern deserts bioregion. In N. G. Sugihara, J. W .V. Wagtendonk, K. E. Shaffer, J. Fites-Kaufman, & A. E. Thode (Eds.), Fire in California’s ecosystems (pp. 391–414). Berkeley: University of California Press.

    Google Scholar 

  • Brooks, M. L., D’Antonio, C. M., Richardson, D. M., Grace, J. B., Keeley, J. E., DiTomaso, J. M., Hobbs, R. J., Pellant, M., & Pyke, D. (2004). Effects of invasive alien plants on fire regimes. Bioscience, 54, 677–688.

    Article  Google Scholar 

  • Brown, D. E., & Minnich, R. A. (1986). Fire and changes in creosote bush scrub of the western Sonoran desert, California. American Midland Naturalist, 116, 411–422.

    Article  Google Scholar 

  • Chen, L., & Driscoll, C. T. (2004). An evaluation of processes regulating spatial and temporal patterns in lake sulfate in the Adirondack region of New York. Global Biogeochemical Cycles, 18, GB3024, doi:10.1029/2003GB002169.

    Google Scholar 

  • Chen, L., & Driscoll, C. T. (2005). Regional assessment of the response of the acid-base status of lake watersheds in the Adirondack region of New York to changes in atmospheric deposition using PnET-BGC. Environmental Science & Technology, 39, 787–794.

    Article  CAS  Google Scholar 

  • Curtis, C. J., Reynolds, B., Allott, T. E. H., & Harriman, R. (2001). The link between the exceedance of acidity critical loads for freshwaters, current chemical status and biological damage: A re-interpretation. Water, Air & Soil Pollution: Focus, 1, 399–413.

    Article  CAS  Google Scholar 

  • De Vries, W., Kros, J., Reinds, G. J., Wamelink, G. W. W., Mol, J., van Dobben, H., Bobbink, R., Emmett, B., Smart, S., Evans, C., Schlutow, A., Kraft, P., Belyazid, S., Sverdrup, H. U., van Hinsberg, A., Posch, M., & Hettelingh, J.-P. (2007). Developments in deriving critical limits and modelling critical loads of nitrogen for terrestrial ecosystems in Europe. (Report 1382). Wageningen, the Netherlands: Alterra Wageningen UR.

    Google Scholar 

  • DeFalco, L. A., Bryla, D. R., Smith-Longozo, V., & Nowak, R. S. (2003). Are Mojave Desert annual species equal? Resource acquisition and allocation for the invasive grass Bromus madritensis subsp rubens (Poaceae) and two native species. American Journal of Botany, 90, 1045–1053.

    Article  Google Scholar 

  • Del Grosso, S. J., Parton, W. J., Mosier, A. R., Ojima, D. S., Kulmala, A. E., & Phongpan, S. (2000). General model for N2O and N2 gas emissions from soils due to denitrification. Global Biogeochemical Cycles, 14, 1045–1060.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Newton, R. M., Gubala, C. P., Baker, J. P., & Christensen, S. W. (1991). Adirondack mountains. In D. F. Charles (Ed.). Acidic deposition and aquatic ecosystems: Regional case studies (pp. 133–202). New York: Springer-Verlag.

    Google Scholar 

  • Driscoll, C. T., Lawrence, G. B., Bulger, A. J., Butler, T. J., Cronan, C. S., Eagar, C., Lambert, K. F., Likens, G. E., Stoddard, J. L., & Weathers, K. C. (2001). Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects, and management strategies. Bioscience, 51, 180–198.

    Article  Google Scholar 

  • Driscoll, C. T., Driscoll, K. M., Roy, K. M., & Mitchell, M. J. (2003). Chemical response of lakes in the Adirondack region of New York to declines in acidic deposition. Environmental Science & Technology, 37, 2036–2042.

    Article  CAS  Google Scholar 

  • Elser, J. J., Andersen, T., Baron, J. S., Bergström, A. K., Jansson, M., Kyle, M., Nydick, K. R., Steger, L., & Hessen, D. O. (2009). Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science, 326, 835.

    Article  CAS  Google Scholar 

  • Fenn, M. E., & Poth, M. A. (1999). Temporal and spatial trends in streamwater nitrate concentrations in the San Bernardino Mountains, southern California. Journal of Environmental Quality, 28, 822–836.

    Article  CAS  Google Scholar 

  • Fenn, M. E., Haeuber, R., Tonnesen, G. S., Baron, J. S., Grossman-Clarke, S., Hope, D., Jaffe, D. A., Copeland, S., Geiser, L., Rueth, H. M., & Sickman, J. O. (2003). Nitrogen emissions, deposition, and monitoring in the western United States. Bioscience, 53, 391–403.

    Article  Google Scholar 

  • Fenn, M. E., Jovan, S., Yuan, F., Geiser, L., Meixner, T., & Gimeno, B. S. (2008). Empirical and simulated critical loads for nitrogen deposition in California mixed conifer forests. Environmental Pollution, 155, 492–511.

    Article  CAS  Google Scholar 

  • Fenn, M. E., Sickman, J. O., Bytnerowicz, A., Clow, D. W., Molotch, N. P., Pleim, J. E., Tonnesen, G. S., Weathers, K. C., Padgett, P. E., & Campbell., D. H. (2009). Methods for measuring atmospheric nitrogen deposition inputs in arid and montane ecosystems of western North America. In A. H. Legge (Ed.), Developments in environmental science, Vol. 9: Air quality and ecological impacts: Relating sources to effects (pp. 179–228). Amsterdam: Elsevier.

    Google Scholar 

  • Fenn, M. E., Lambert, K. F., Blett, T. F., Burns, D. A., Pardo, L. H., Lovett, G. M., Haeuber, R. A., Evers, D. C., Driscoll, C. T., & Jeffries, D. S. (2011). Setting limits: Using air pollution thresholds to protect and restore U.S. ecosystems. (Issues in Ecology, Report Number 14). Washington: Ecological Society of America.

    Google Scholar 

  • Gasche, R., & Papen, H. (2002). Spatial variability of NO and NO2 flux rates from soil of spruce and beech forest ecosystems. Plant Soil, 240, 67–76.

    Article  CAS  Google Scholar 

  • Gbondo-Tugbawa, S. S., Driscoll, C. T., Aber, J. D., & Likens, G. E. (2001). Evaluation of an integrated biogeochemical model (PnET-BGC) at a northern hardwood forest ecosystem. Water Resources Research, 37, 1057–1070.

    Article  CAS  Google Scholar 

  • Gimeno, B. S., Yuan, F., Fenn, M. E., & Meixner, T. (2009). Management options for mitigating nitrogen (N) losses from N saturated mixed conifer forests in California. In A. Bytnerowicz, M. J. Arbaugh, A. R. Riebau, & C. Andersen (Eds.), Wildland fires and air pollution. Developments in environmental science (Vol. 8, pp. 425–455). Amsterdam: Elsevier.

    Google Scholar 

  • Gundersen, P., Schmidt, I. K., & Raulund-Rasmussen, K. (2006). Leaching of nitrate from temperate forests—effects of air pollution and forest management. Environmental Reviews, 14, 1–57.

    Article  CAS  Google Scholar 

  • Hartman, M. D., Baron, J. S., & Ojima, D. S. (2007). Application of a coupled ecosystem-chemical equilibrium model, DayCent-Chem, to stream and soil chemistry in a Rocky Mountain watershed. Ecological Modelling, 200, 493–510.

    Article  Google Scholar 

  • Hartman, M. D., Baron, J. S., Clow, D. W., Creed, I. F., Driscoll, C. T., Ewing, H. A., Haines, B. D., Knoepp, J., Lajtha, K., Ojima, D. S., Parton, W. J., Renfro, J., Robinson, R. B., van Miegroet, H., Weathers, K. C., & Williams, M. W. (2009). DayCent-Chem simulations of ecological and biogeochemical processes of eight mountain ecosystems in the United States. (Report 2009–5150). U.S. Geological Survey Scientific Investigations.

    Google Scholar 

  • Hettelingh, J. P., Posch, M., & Slootweg, J. (2008). Critical load, dynamic modelling and impact assessment in Europe. CCE status report 2008. (RIVM Report 500090003). Bilthoven, The Netherlands: Coordination Centre for Effects, National Institute for Public Health and the Environment.

    Google Scholar 

  • Interlandi, S. J., & Kilham, S. S. (2001). Limiting resources and the regulation of diversity in phytoplankton communities. Ecology, 82, 1270–1282.

    Article  Google Scholar 

  • Ito, M., Mitchell, M. J., & Driscoll, C. T. (2002). Spatial patterns of precipitation quantity and chemistry and air temperature in the Adirondack region of New York. Atmospheric Environment, 36, 1051–1062.

    Article  CAS  Google Scholar 

  • Kretser, W. J., Gallagher, J., & Nicolette, J. (1989). Adirondack lake survey, 1984–1987: An evaluation of fish communities and water chemistry. Ray Brook: Adirondack Lakes Survey Corporation.

    Google Scholar 

  • Pardo, L. H., Fenn, M. E., Goodale, C. L., Geiser, L. H., Driscoll, C. T., Allen, E. B., Baron, J. S., Bobbink, R., Bowman, W. D., Clark, C. M., Emmett, B., Gilliam, F. S., Greaver, T. L., Hall, S. J., Lilleskov, E. A., Liu, L., Lynch, J. A., Nadelhoffer, K. J., Perakis, S. S., Robin-Abbott, M. J., Stoddard, J. L., Weather, K. C., & Dennis, R. L. (2011). Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecological Application, 21, 3049–3082.

    Article  Google Scholar 

  • Parton, W. J., Scurlock, J. M. O., Ojima, D. S., Gilmanov, T. G., Scholes, R. J., Schimel, D. S., Kirchner, T., Menaut, J. C., Seastedt, T., Moya, E. G., Kamnalrut, A., & Kinyamario, J. I. (1993). Observations and modeling of biomass and soil organic-matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles, 7, 785–809.

    Article  CAS  Google Scholar 

  • Parton, W. J., Hartman, M., Ojima, D., & Schimel, D. (1998). DAYCENT and its land surface submodel: Description and testing. Global Planet Change, 19, 35–48.

    Article  Google Scholar 

  • Parton, W. J., Holland, E. A., Del Grosso, S. J., Hartman, M. D., Martin, R. E., Mosier, A. R., Ojima, D. S., & Schimel, D. S. (2001). Generalized model for NOx and N2O emissions from soils. Journal of Geophysical Research: Atmospheres, 106, 17403–17419.

    Article  CAS  Google Scholar 

  • Rao, L. E., & Allen, E. B. (2010). Combined effects of precipitation and nitrogen deposition on native and invasive winter annual production in California deserts. Oecologia, 62, 1035–1046.

    Article  Google Scholar 

  • Rao, L. E., Allen, E. B., & Meixner, T. (2010). Risk-based determination of critical nitrogen deposition loads for fire spread in southern California deserts. Ecological Application, 20, 1320–1335.

    Article  Google Scholar 

  • Rapp, L., & Bishop, K. (2009). Surface water acidification and critical loads: Exploring the F-factor. Hydrology & Earth System Sciences, 13, 2191–2201.

    Article  CAS  Google Scholar 

  • Riggan, P. J., Lockwood, R. N., & Lopez, E. N. (1985). Deposition and processing of airborne nitrogen pollutants in Mediterranean-type ecosystems of southern California. Environmental Science & Technology, 19, 781–789.

    Article  CAS  Google Scholar 

  • Saros, J. E., Clow, D. W., Blett, T., & Wolfe, A. P. (2011). Critical nitrogen deposition loads in high-elevation lakes of the western US inferred from paleolimnological records. Water, Air & Soil Pollution, 216, 193–202.

    Article  CAS  Google Scholar 

  • Skiba, U., Pitcairn, C., Sheppard, L., Kennedy, V., & Fowler, D. (2004). The influence of atmospheric N deposition on nitrous oxide and nitric oxide fluxes and soil ammonium and nitrate concentrations. Water, Air & Soil Pollution: Focus, 4, 37–43.

    Article  CAS  Google Scholar 

  • Smil, V. (2001). Fritz Haber, Carl Bosch and the transformation of world food production. Cambridge: The MIT Press.

    Google Scholar 

  • Steers, R. J., & Allen, E. B. (2010). Post-fire control of invasive plants promotes native recovery in a burned desert shrubland. Restoration Ecology, 18, 334–343.

    Article  Google Scholar 

  • Sullivan, T. J., Cosby, B. J., Tonnessen, K. A., & Clow, D. W. (2005). Surface water acidification responses and critical loads of sulfur and nitrogen deposition in Loch Vale watershed, Colorado. Water Resources Research, 41, W01021.

    Google Scholar 

  • Sverdrup, H., McDonnell, T. C., Sullivan, T. J., NihlgÃ¥rd, B., Belyazid, S., Rihm, B., Porter, E., Bowman, W. D., & Geiser, L. (2012). Testing the feasibility of using the ForSAFE-VEG model to map the critical load of nitrogen to protect plant biodiversity in the Rocky Mountains region, USA. Water, Air & Soil Pollution, 223, 371–387.

    Article  CAS  Google Scholar 

  • Tonnesen, G., Wang, Z., Omary, M., & Chien, C. J. (2007). Assessment of Nitrogen Deposition: Modeling and Habitat Assessment. (CEC-500–2005-032. http://www.energy.ca.gov/2006publications/CEC-500-2006-032/CEC-500-2006-032.PDF). California Energy Commission, PIER Energy-Related Environmental Research.

  • USEPA. (2009). Risk and Exposure Assessment for Review of the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides of Sulfur. EPA-452/P-09–004a.

    Google Scholar 

  • Walvoord, M. A., Phillips, F. M., Stonestrom, D. A., Evans, R. D., Hartsough, P. C., Newman, B. D., & Striegl, R. G. (2003). A reservoir of nitrate beneath desert soils. Science, 302, 1021–1024.

    Article  CAS  Google Scholar 

  • Watmough, S. A., Aherne, J., & Dillon, P. (2005). Effect of declining lake base cation concentration on freshwater critical load calculations. Environmental Science & Technology, 39, 3255–3260.

    Article  CAS  Google Scholar 

  • Williams, M. W., & Tonnessen, K. A. (2000). Critical loads for inorganic nitrogen deposition in the Colorado Front Range, USA. Ecological Application, 10, 1648–1665.

    Article  Google Scholar 

  • Wolfe, A. P., van Gorp, A. C., & Baron, J. S. (2003). Recent ecological and biogeochemical changes in alpine lakes of Rocky Mountain National Park (Colorado, USA): A response to anthropogenic nitrogen deposition. Geobiology, 1, 153–168.

    Article  CAS  Google Scholar 

  • Zhai, J., Driscoll, C. T., Sullivan, T. J., & Cosby, B. J. (2008). Regional application of the PnET-BGC model to assess historical acidification of Adirondack lakes. Water Resources Research, 44, W01421.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded in part by a National Science Foundation (USA) grant (NSF DEB 04–21530) and by New York State Energy Research and Development Authority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Fenn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fenn, M. et al. (2015). Use of Combined Biogeochemical Model Approaches and Empirical Data to Assess Critical Loads of Nitrogen. In: de Vries, W., Hettelingh, JP., Posch, M. (eds) Critical Loads and Dynamic Risk Assessments. Environmental Pollution, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9508-1_10

Download citation

Publish with us

Policies and ethics