Skip to main content

Research Tools: Ethylene Detection

  • Chapter
  • First Online:
Ethylene in Plants

Abstract

Over the last decades, ethylene detection in plant physiological studies is mainly done through enclosing of the plant material under study for a period of time in a closed flask or container and analyzing the accumulated ethylene in the headspace using a gas chromatography equipped with a flame ionization detector. In most of the studies, this will give a reasonable measure of the in vivo ethylene production. However, especially the changing composition of the atmosphere may influence plant behavior and subsequently its ethylene production. Also, if such measurements are mostly done on excised plant parts, the induced wounding also may affect the total ethylene production. Therefore, there is clearly a need for more sensitive equipment to measure ethylene of whole plant or plant parts (in planta) in a flow-through situation. One direction is to further optimize standard GC equipment. This can be done, e.g., by using a more sensitive photoionization detector or through improved sampling and preconcentration devices. Another route is provided by other techniques including the laser-based detection or mass spectrometry that are inherently more sensitive and fast for ethylene measurement. This chapter discusses several of the available techniques for ethylene detection as well as the gas sampling approaches. Guidelines for proper selection and use of the described methods are provided together with examples of applications of monitoring ethylene production from various biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Li Y, Meng DZ, Platt A, Tarone AM, Hu TT, Jiang R, Muliyati NW, Zhang X, Amer MA, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Ecker JR, Faure N, Kniskern JM, Jones JDG, Michael T, Nemri A, Roux F, Salt DE, Tang CL, Todesco M, Traw MB, Weigel D, Marjoram P, Borevitz JO, Bergelson J, Nordborg M. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature. 2010;465(7298):627–31. doi:10.1038/Nature08800.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bassi PK, Spencer MS. Comparative-evaluation of photoionization and flame ionization detectors for ethylene analysis. Plant Cell Environ. 1985;8(2):161–5. doi:10.1111/j.1365-3040.1985.tb01224.x.

    Article  CAS  Google Scholar 

  • Benlloch-Gonzalez M, Romera J, Cristescu S, Harren F, Fournier JM, Benlloch M. K+ starvation inhibits water-stress-induced stomatal closure via ethylene synthesis in sunflower plants. J Exp Bot. 2010;61(4):1139–1145. doi:10.1093/jxb/erp379.

  • Boamfa EI, Steeghs MML, Cristescu SM, Harren FJM. Trace gas detection from fermentation processes in apples; an intercomparison study between proton-transfer-reaction mass spectrometry and laser photoacoustics. Int J Mass Spectrom. 2004;239(2–3):193–201. doi:10.1016/j.ijms.2004.07.017.

    Article  CAS  Google Scholar 

  • Brewer RJ, Bruce CW, Mater JL. Optoacoustic spectroscopy of C2h4 at the 9-Mu-M and 10-Mu-M (C12o2)-O-16 laser wavelengths. Appl Opt. 1982;21(22):4092–100.

    Article  PubMed  CAS  Google Scholar 

  • Burg SP, Stolwijk JAJ. A highly sensitive katharometer and its application to the measurement of ethylene and other gases of biological importance. J Biochem Microbiol. 1959;1(3):245–59. doi:10.1002/jbmte.390010302.

    CAS  Google Scholar 

  • Cappellin L, Loreto F, Aprea E, Romano A, del Pulgar JS, Gasperi F, Biasioli F. PTR-MS in Italy: a multipurpose sensor with applications in environmental. Agri-Food Health Sci Sens. 2013;13(9):11923–55. doi:10.3390/S130911923.

    Google Scholar 

  • Clarke SM, Cristescu SM, Miersch O, Harren FJM, Wasternack C, Mur LAJ. Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol. 2009;182(1):175–87. doi:10.1111/j.1469-8137.2008.02735.x.

    Article  PubMed  CAS  Google Scholar 

  • Costa F, Cappellin L, Farneti B, Tadiello A, Romano A, Soukoulis C, Sansavini S, Velasco R, Biasioli F. Advances in QTL mapping for ethylene production in apple (Malus x domestica Borkh.). Postharvest Biol Tec. 2014;87:126–32. doi:10.1016/j.postharvbio.2013.08.013.

    Article  CAS  Google Scholar 

  • Cristescu SM, De Martinis D, Hekkert ST, Parker DH, Harren FJM. Ethylene production by Botrytis cinerea in vitro and in tomatoes. Appl Environ Microbiol. 2002;68(11):5342–50. doi:10.1128/Aem.68.11.5340-5350.2002.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cristescu SM, Mandon J, Arslanov D, De Pessemier J, Hermans C, Harren FJM. Current methods for detecting ethylene in plants. Ann Bot-London. 2013;111(3):347–60. doi:10.1093/Aob/Mcs259.

    Article  CAS  Google Scholar 

  • Cristescu SM, Persijn ST, Hekkert STL, Harren FJM. Laser-based systems for trace gas detection in life sciences. Appl Phys B-Lasers O. 2008;92(3):343–9. doi:10.1007/s00340-008-3127-y.

    Article  CAS  Google Scholar 

  • Cristescu SM, Woltering EJ, Harren FJM. Real time monitoring of ethylene during fungal-plant interaction by laser-based photoacoustic spectroscopy. In: Dijksterhuis J, Samson RA, editors. Food mycology, a multifaceted approach to fungi and food, vol. 25. New York: Traylor and Francis; 2006. p. 25–47.

    Google Scholar 

  • Danner H, Samudrala D, Cristescu SM, Van Dam NM. Tracing hidden herbivores: time-resolved non-invasive analysis of belowground volatiles by proton-transfer-reaction mass spectrometry (PTR-MS). J Chem Ecol. 2012;38(6):785–94. doi:10.1007/s10886-012-0129-3.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • de Gouw J, Warneke C, Karl T, Eerdekens G, van der Veen C, Fall R. Sensitivity and specificity of atmospheric trace gas detection by proton-transfer-reaction mass spectrometry. Int J Mass Spectrom. 2003;223(1–3):365–382. doi:10.1016/S1387-3806(02)00926-0.

  • De Gouw JA, Hekkert STL, Mellqvist J, Warneke C, Atlas EL, Fehsenfeld FC, Fried A, Frost GJ, Harren FJM, Holloway JS, Lefer B, Lueb R, Meagher JF, Parrish DD, Patel M, Pope L, Richter D, Rivera C, Ryerson TB, Samuelsson J, Walega J, Washenfelder RA, Weibring P, Zhu X. Airborne measurements of ethene from industrial sources using laser photo-acoustic spectroscopy. Environ Sci Technol. 2009;43(7):2437–42. doi:10.1021/Es802701a.

    Article  PubMed  Google Scholar 

  • De Pessemier J, Chardon F, Juraniec M, Delaplace P, Hermans C. Natural variation of the root morphological response to nitrate supply in Arabidopsis thaliana. Mech Dev. 2013;130(1):45–53. doi:10.1016/j.mod.2012.05.010.

    Article  PubMed  Google Scholar 

  • Degreef JA, Deproft M. Kinetic measurements of small ethylene changes in an open system designed for plant physiological studies. Physiol Plant. 1978;42(1):79–84.

    Article  CAS  Google Scholar 

  • Dong JG, Fernandezmaculet JC, Yang SF. Purification and characterization of 1-aminocyclopropane-1-carboxylate oxidase from apple fruit. Proc Natl Acad Sci USA. 1992;89(20):9789–93. doi:10.1073/pnas.89.20.9789.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ellison CT, Vandenbussche F, Van Der Straeten D, Harmer SL. XAP5 CIRCADIAN TIMEKEEPER regulates ethylene responses in aerial tissues of arabidopsis. Plant Physiol. 2011;155(2):988–99. doi:10.1104/pp.110.164277.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Esser B, Schnorr JM, Swager TM. Selective detection of ethylene gas using carbon nanotube-based devices: utility in determination of fruit ripeness. Angew Chem Int Edit. 2012;51(23):5752–6. doi:10.1002/anie.201201042.

    Article  CAS  Google Scholar 

  • Fink T, Buscher S, Gabler R, Yu Q, Dax A, Urban W. An improved CO2 laser intracavity photoacoustic spectrometer for trace gas analysis. Rev Sci Instrum. 1996;67(11):4000–4. doi:10.1063/1.1147274.

    Article  CAS  Google Scholar 

  • Fiserova H, Mikusova Z, Klems M. Estimation of ethylene production and 1-aminocyclopropane-1-carboxylic acid content in plants by means of gas chromatography. Plant Soil Environ. 2008;54(2):55–60.

    CAS  Google Scholar 

  • Forni C, Braglia R, Harren FJ, Cristescu SM. Stress responses of duckweed (Lemna minor L.) and water velvet (Azolla filiculoides Lam.) to anionic surfactant sodium-dodecyl-sulphate (SDS). Aquat Toxicol. 2012;110–111:107–113. doi:10.1016/j.aquatox.2011.12.017.

  • Gallego-Bartolome J, Arana MV, Vandenbussche F, Zadnikova P, Minguet EG, Guardiola V, Van der Straeten D, Benkova E, Alabadi D, Blazquez MA. Hierarchy of hormone action controlling apical hook development in Arabidopsis. Plant J. 2011;67(4):622–34. doi:10.1111/j.1365-313X.2011.04621.x.

    Article  PubMed  CAS  Google Scholar 

  • Hansel A, Jordan A, Holzinger R, Prazeller P, Vogel W, Lindinger W. Proton-transfer reaction mass-spectrometry—online trace gas-analysis at the Ppb level. Int J Mass Spectrom. 1995;149:609–19. doi:10.1016/0168-1176(95)04294-U.

    Article  Google Scholar 

  • Harren FJM, Bijnen FGC, Reuss J, Voesenek LACJ, Blom CWPM. Sensitive intracavity photoacoustic measurements with a CO2 waveguide laser. Appl Phys B. 1990;50:137–44.

    Article  Google Scholar 

  • Harren FJM, Cristescu SM. Online, real-time detection of volatile emissions from plant tissue. AoB Plants. 2013;5. doi:10.1093/aobpla/plt003.

  • Hermans C, Porco S, Vandenbussche F, Gille S, De Pessemier J, Van Der Straeten D, Verbruggen N, Bush DR. Dissecting the role of CHITINASE-LIKE1 in nitrate-dependent changes in root architecture. Plant Physiol. 2011;157(3):1313–1326. doi:10.1104/pp.111.181461.

  • Hermans C, Vuylsteke M, Coppens F, Cristescu SM, Harren FJ, Inze D, Verbruggen N. Systems analysis of the responses to long-term magnesium deficiency and restoration in Arabidopsis thaliana. New Phytol. 2010;187(1):132–144. doi:10.1111/j.1469-8137.2010.03257.x.

  • Iqbal N, Nazar R, Syeed S, Masood A, Khan NA. Exogenously-sourced ethylene increases stomatal conductance, photosynthesis, and growth under optimal and deficient nitrogen fertilization in mustard. J Exp Bot. 2011;62(14):4955–63. doi:10.1093/Jxb/Err204.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Iqbal N, Trivellini A, Masood A, Ferrante A, Khan NA. Current understanding on ethylene signaling in plants: the influence of nutrient availability. Plant Physiol Bioch. 2013;73:128–38. doi:10.1016/j.plaphy.2013.09.011.

    Article  CAS  Google Scholar 

  • Jordan A, Haidacher S, Hanel G, Hartungen E, Herbig J, Mark L, Schottkowsky R, Seehauser H, Sulzer P, Mark TD. An online ultra-high sensitivity Proton-transfer-reaction mass-spectrometer combined with switchable reagent ion capability (PTR+SRI-MS). Int J Mass Spectrom. 2009;286(1):32–8. doi:10.1016/j.ijms.2009.06.006.

    Article  CAS  Google Scholar 

  • Khan NA, Mir MR, Nazar R, Singh S. The application of ethephon (an ethylene releaser) increases growth, photosynthesis and nitrogen accumulation in mustard (Brassica juncea L.) under high nitrogen levels. Plant Biol. 2008;10(5):534–8. doi:10.1111/j.1438-8677.2008.00054.x.

    Article  PubMed  CAS  Google Scholar 

  • Korte A, Farlow A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods. 2013;9. doi:10.1186/1746-4811-9-29.

  • Kreuzer LB. Optoacoustic spectroscopy and detection. New York: Academic Press; 1977. p. 1–25.

    Book  Google Scholar 

  • Leblanc A, Renault H, Lecourt J, Etienne P, Deleu C, Le Deunff E. Elongation changes of exploratory and root hair systems induced by aminocyclopropane carboxylic acid and aminoethoxyvinylglycine affect nitrate uptake and BnNrt2.1 and BnNrt1.1 transporter gene expression in oilseed rape. Plant Physiol. 2008;146(4):1928–40. doi:10.1104/pp.107.109363.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lequeux H, Hermans C, Lutts S, Verbruggen N. Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Bioch. 2010;48(8):673–82. doi:10.1016/j.plaphy.2010.05.005.

    Article  CAS  Google Scholar 

  • Lloyd AJ, William Allwood J, Winder CL, Dunn WB, Heald JK, Cristescu SM, Sivakumaran A, Harren FJ, Mulema J, Denby K, Goodacre R, Smith AR, Mur LA. Metabolomic approaches reveal that cell wall modifications play a major role in ethylene-mediated resistance against Botrytis cinerea. Plant J. 2011;67(5):852–68. doi:10.1111/j.1365-313X.2011.04639.x.

    Article  PubMed  CAS  Google Scholar 

  • Lund ST, Stall RE, Klee HJ. Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell. 1998;10(3):371–82.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Manne J, Lim A, Jager W, Tulip J. Off-axis cavity enhanced spectroscopy based on a pulsed quantum cascade laser for sensitive detection of ammonia and ethylene. Appl Opt. 2010;49(28):5302–8.

    Article  PubMed  CAS  Google Scholar 

  • McDaniel BK, Binder BM. ETHYLENE RECEPTOR1 (ETR1) Is sufficient and has the predominant role in mediating inhibition of ethylene responses by silver in Arabidopsis thaliana. J Biol Chem. 2012;287:26094–26103. doi:10.1074/jbc.M112.383034.

  • Millenaar FF, van Zanten M, Cox MCH, Pierik R, Voesenek LACJ, Peeters AJM. Differential petiole growth in Arabidopsis thaliana: photocontrol and hormonal regulation. New Phytol. 2009;184(1):141–52. doi:10.1111/j.1469-8137.2009.02921.x.

    Article  PubMed  CAS  Google Scholar 

  • Moniuszko G, Laska-Oberndorff A, Cristescu SM, Harren FJM, Sirko A. Ethylene emitted by nylon membrane filters questions their usefulness to transfer plant seedlings between media. Biotechniques. 2011;51(5):329. doi:10.2144/000113762.

  • Mur LA, Sivakumaran A, Mandon J, Cristescu SM, Harren FJ, Hebelstrup KH. Haemoglobin modulates salicylate and jasmonate/ethylene-mediated resistance mechanisms against pathogens. J Exp Bot. 2012;63:4375–4387. doi:10.1093/jxb/ers116.

  • Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang ZW, Costich DE, Buckler ES. Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell. 2009;21(8):2194–202. doi:10.1105/tpc.109.068437.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nagele M, Sigrist MW. Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas sensing. Appl Phys B-Lasers O. 2000;70(6):895–901.

    Article  CAS  Google Scholar 

  • Nitsch L, Kohlen W, Oplaat C, Charnikhova T, Cristescu S, Michieli P, Wolters-Arts M, Bouwmeester H, Mariani C, Vriezen WH, Rieu I. ABA-deficiency results in reduced plant and fruit size in tomato. J Plant Physiol. 2012;169(9):878–883. doi:10.1016/j.jplph.2012.02.004.

  • Pan WD, Zhang JW, Dai JM, Song K. Tunable diode laser absorption spectroscopy system for trace ethylene detection. Spectrosc Spect Anal. 2012;32(10):2875–2878. doi:10.3964/j.issn.1000-0593(2012)10-2875-04.

  • Piechulla B, Roeder S, Dreschler K, Wirtz M, Cristescu SM, van Harren FJM, Hell R. SAM levels, gene expression of SAM synthetase, methionine synthase and ACC oxidase, and ethylene emission from N-suaveolens flowers. Plant Mol Biol. 2009;70(5):535–46. doi:10.1007/s11103-009-9490-1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pranamornkith T, East A, Heyes J. Influence of exogenous ethylene during refrigerated storage on storability and quality of Actinidia chinensis (cv. Hort16A). Postharvest Biol Tec. 2012; 64(1):1–8. doi: 10.1016/j.postharvbio.2011.09.011.

  • Qadir A, Hewett EW, Long PG. Ethylene production by Botrytis cinerea. Postharvest Biol Tec. 1997;11(2):85–91. doi:10.1016/S0925-5214(97)00016-1.

    Article  CAS  Google Scholar 

  • Salman A, Filgueiras H, Cristescu S, Lopez-Lauri F, Harren F, Sallanon H. Inhibition of wound-induced ethylene does not prevent red discoloration in fresh-cut endive (Cichorium intybus L.). Eur Food Res Technol. 2009;228(4):651–657. doi:10.1007/s00217-008-0974-z.

  • Saltveit ME. Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biol Tec. 1999;15(3):279–92. doi:10.1016/S0925-5214(98)00091-X.

    Article  CAS  Google Scholar 

  • Schmelz EA, Alborn HT, Tumlinson JH. The influence of intact-plant and excised-leaf bioassay designs on volicitin- and jasmonic acid-induced sesquiterpene volatile release in Zea mays. Planta. 2001;214(2):171–9.

    Article  PubMed  CAS  Google Scholar 

  • Schroder R, Cristescu SM, Harren FJM, Hilker M. Reduction of ethylene emission from Scots pine elicited by insect egg secretion. J Exp Bot. 2007;58(7):1835–42. doi:10.1093/Jxb/Erm044.

    Article  PubMed  Google Scholar 

  • Shekarriz R, Allen WL. Nanoporous gold electrocatalysis for ethylene monitoring and control. Eur J Hortic Sci. 2008;73(4):171–6.

    CAS  Google Scholar 

  • Stewart-Jones A, Poppy GM. Comparison of glass vessels and plastic bags for enclosing living plant parts for headspace analysis. J Chem Ecol. 2006;32(4):845–64. doi:10.1007/s10886-006-9039-6.

    Article  PubMed  CAS  Google Scholar 

  • Tholl D, Boland W, Hansel A, Loreto F, Rose USR, Schnitzler JP. Practical approaches to plant volatile analysis. Plant J. 2006;45(4):540–60. doi:10.1111/j.1365-313X.2005.02612.x.

    Article  PubMed  CAS  Google Scholar 

  • Tian QY, Sun P, Zhang WH. Ethylene is involved in nitrate-dependent root growth and branching in Arabidopsis thaliana. New Phytol. 2009;184(4):918–31. doi:10.1111/j.1469-8137.2009.03004.x.

    Article  PubMed  CAS  Google Scholar 

  • Weidmann D, Kosterev AA, Roller C, Curl RF, Fraser MP, Tittel FK. Monitoring of ethylene by a pulsed quantum cascadelaser. Appl Opt. 2004;43(16):3329–34.

    Article  PubMed  CAS  Google Scholar 

  • Woltering E, Sterling EP. Design for studies on ethylene sensitivity and ethylene production of ornamental products. Acta Horticulturae. 1986;181:483–8.

    Google Scholar 

  • Yordanova ZP, Iakimova ET, Cristescu SM, Harren FJ, Kapchina-Toteva VM, Woltering EJ. Involvement of ethylene and nitric oxide in cell death in mastoparan-treated unicellular alga Chlamydomonas reinhardtii. Cell Biol Int. 2010;34(3):301–308. doi:10.1042/CBI20090138.

  • Zevenbergen MA, Wouters D, Dam VA, Brongersma SH, Crego-Calama M. Electrochemical sensing of ethylene employing a thin ionic-liquid layer. Anal Chem. 2011;83(16):6300–7. doi:10.1021/ac2009756.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona M. Cristescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cristescu, S.M., Woltering, E., Hermans, C., Harren, F.J., te Lintel Hekkert, S. (2015). Research Tools: Ethylene Detection. In: Wen, CK. (eds) Ethylene in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9484-8_14

Download citation

Publish with us

Policies and ethics