Skip to main content

Reactive Oxygen Species (ROS) and ABA Signalling

  • Chapter
  • First Online:
Abscisic Acid: Metabolism, Transport and Signaling

Abstract

Various abiotic and biotic stress conditions result in the accumulation of both abscisic acid (ABA) and reactive oxygen species (ROS) in plants. The adaptation of plants to these stress conditions is a very complex process, which including stress signal perception, transduction and change of genes expression. The signalling pathways between ABA and ROS are independent of each other or crosstalk at various levels. The first part of this chapter focus on ROS turnover in the presence of ABA and under stress conditions, including their generation from photosynthetic system and non-photosynthetic system, the ROS detoxification by enzymatic antioxidant systems and non-enzymatic low-molecular weight metabolites. The second part is attempted to explore the dual role of ROS for toxic to cells and signalling in stress adaptation regulated by ABA. Finally, the third part in detail discusses the crosstalk between ABA and ROS in regulation of stomatal movement, dormancy and germination of seed, development of root system and stress adaptation in the transcription levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ROS:

Reactive oxygen species

ABI1:

ABA insensitive 1

ABI2:

ABA insensitive 2

AtGPX3:

Arabidopsis glutathione peroxidase 3

OST1:

Open stomata 1

MPK:

Mitogen-activated protein kinase

MEKK:

Mitogen-activated protein kinase kinase

GHR1:

Guard cell hydrogen peroxide-resistant1

HSFs:

Heat shock transcription factor

Zat:

Zinc finger protein

WRKY:

WRKY transcription factors

SLAC1:

S–type anion channel

GPCR:

G protein-coupled receptor

PYL/PYL/RCA:

ABA receptor

PP2C:

Type 2C protein phosphatase

SOD:

Superoxide dismutase

APX:

Ascorbate peroxidase

GPX:

Glutathione peroxidase

GST:

Glutathione-S–transferase

CAT:

Catalase

PLD:

Phospholipase dalpha1

PA:

Phosphatidic acid

PI3P:

Phosphatidylinositol 3-phosphate

GCA2:

Growth controlled by abscisic acid 2

cGMP:

Cyclic guanosine monophosphate

ATHK:

Arabidopsis thaliana histidine kinase

HAB1:

Hypersensitive to ABA 1

SWI3B:

Arabidopsis thaliana homologue of the yeast SWI3 subunit of SWI/SNF chromatin-remodelling complexes

GPA1:

Gα subunit

RCN1:

Reticulocalbin 1

MEK1/2:

Mitogen-activated protein kinase kinase 1/2

OXI1:

Oxidative signal-inducible serine/threonine protein kinase 1

ANP1:

MAPK kinase kinase

AtNDPK2:

Nucleoside diphosphate kinase 2

CBL:

Calcineurin B-like

CIPK:

CBL-interacting protein kinases

AtRac1:

Arabidopsis small guanosine triphosphatase (GTPase) protein

SNAC1:

Stress-related NAC superfamily of transcription factors

ABP9:

ABA-responsive-element (ABRE) binding protein 9

References

  • Acharya BR, Assmann SM. Hormone interactions in stomatal function. Plant Mol Biol. 2009;69:451–62.

    PubMed  CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol. 2010;30:161–75.

    PubMed  CAS  Google Scholar 

  • Allan AC, Fluhr R. Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell. 1997;9:1559–72.

    PubMed  PubMed Central  CAS  Google Scholar 

  • An Z, Jing W, Liu Y, Zhang W. Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. J Exp Bot. 2008;59:815–25.

    PubMed  CAS  Google Scholar 

  • Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373–99.

    PubMed  CAS  Google Scholar 

  • Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 2006;141:391–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Aslund F, Zheng M, Beckwith J, Storz G. Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc Natl Acad Sci USA. 1999;96:6161–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Athar HUR, Khan A, Ashraf M. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ Exp Bot. 2008;63:224–31.

    CAS  Google Scholar 

  • Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A, Tanaka K. Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol Plant. 2004;121:231–8.

    PubMed  CAS  Google Scholar 

  • Bahin E, Bailly C, Sotta B, Kranner I, Corbineau F, Leymarie J. Crosstalk between reactive oxygen species and hormonal signalling pathways regulates grain dormancy in barley. Plant, Cell Environ. 2011;34:980–93.

    CAS  Google Scholar 

  • Bai L, Zhou Y, Zhang XR, Song CP, Cao MQ. Hydrogen peroxide modulates abscisic acid signaling in root growth and development in Arabidopsis. Chin Sci Bull. 2007;52:1142–5.

    CAS  Google Scholar 

  • Bai L, Zhang G, Zhou Y, Zhang Z, Wang W, Du Y, Wu Z, Song CP. Plasma membrane associated proline rich extension like receptor kinase 4, a novel regulator of Ca2+ signalling, is required for abscisic acid responses in Arabidopsis thaliana. Plant J. 2009;60:314–27.

    PubMed  CAS  Google Scholar 

  • Bailly C, El Maarouf Bouteau H, Corbineau F. Seed dormancy alleviation and oxidative signaling. J Soc Biol. 2008;202:241–8.

    PubMed  CAS  Google Scholar 

  • Barba-Espin G, Nicolas E, Almansa MS, Cantero-Navarro E, Albacete A, Hernández JA, Díaz-Vivancos P. Role of thioproline on seed germination: interaction ROS-ABA and effects on antioxidative metabolism. Plant Physiol Biochem. 2012;59:30–6.

    PubMed  CAS  Google Scholar 

  • Baron KN, Schroeder DF, Stasolla C. Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Sci. 2012;188–189:48–59.

    PubMed  Google Scholar 

  • Bartoli CG, Gómez F, Martinez DE, Guiamet JJ. Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.). J Exp Bot. 2004;55:1663–9.

    PubMed  CAS  Google Scholar 

  • Bechtold U, Richard O, Zamboni A, Gapper C, Geisler M, Pogson B, Karpinski S, Mullineaux PM. Impact of chloroplastic- and extracellular-sourced ROS on high light-responsive gene expression in Arabidopsis. J Exp Bot. 2008;59:121–33.

    PubMed  CAS  Google Scholar 

  • Bethke PC, Libourel IG, Aoyama N, Chung YY, Still DW, Jones RL. The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol. 2007;143:1173–88.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bethke PC, Libourel IG, Reinöhl V, Jones RL. Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner. Planta. 2006;223:805–12.

    PubMed  CAS  Google Scholar 

  • Bhattacharjee S. Sites of generation and physicochemical basis of formation of reactive oxygen species in plant cell. In: Reactive oxygen species and antioxidants in higher plants. Science Publishers; 2010. p. 1–30.

    Google Scholar 

  • Bienert GP, Schjoerring JK, Jahn TP. Membrane transport of hydrogen peroxide. Biochim Biophys Acta. 2006;1758:994–1003.

    PubMed  CAS  Google Scholar 

  • Bolwell GP, Woftastek P. Mechanism for the generation of reactive oxygen species in plant defense-Broad perspective. Physiol Mol Plant Pathol. 1997;51:347–9.

    CAS  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J. 2006;45:113–22.

    Google Scholar 

  • Britt AB. Molecular genetics of DNA repair in higher plants. Trends Plant Sci. 1999;4:20–5.

    PubMed  Google Scholar 

  • Chen C, Dickman MB. Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc Natl Acad Sci USA. 2005;102:3459–64.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Choudhary R, Saroha AE, Swarnkar PL. Effect of abscisic acid and hydrogen peroxide on antioxidant enzymes in Syzygium cumini plant. J Food Sci Technol. 2012;49:649–52.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Comtois SL, Gidley MD, Kelly DJ. Role of the thioredoxin system and the thiol-peroxidases Tpx and Bcp in mediating resistance to oxidative and nitrosative stress in Helicobacter pylori. Microbiology. 2003;149:121–9.

    PubMed  CAS  Google Scholar 

  • Conklin PL, Saracco SA, Norris SR, Last RL. Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics. 2000;154:847–56.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol. 2010;61:651–79.

    PubMed  CAS  Google Scholar 

  • Dalton TP, Shertzer HG, Puga A. Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol. 1999;39:67–101.

    PubMed  CAS  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell. 2005;17:268–81.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Del Río LA, Sandalio LM, Palma JM, Bueno P, Corpas FJ. Metabolism of oxygen radicals in peroxisomes and cellular implications. J Free Radic Biol Med. 1992;13:557–80.

    Google Scholar 

  • Del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB. Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol. 2006;141:330–5.

    PubMed  PubMed Central  Google Scholar 

  • Desikan R, Reynolds A, Hancock J, Neill S. Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defence gene expression in Arabidopsis suspension cultures. Biochem J. 1998;330:115–20.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Desikan R, A-H-Mackerness S, Hancock JT, Neill SJ. Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol. 2001;127:159–72.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ. ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot. 2004;55:205–12.

    PubMed  CAS  Google Scholar 

  • Desikan R, Horák J, Chaban C, Mira-Rodado V, Witthöft J, Elgass K, Grefen C, Cheung MK, Meixner AJ, Hooley R, Neill SJ, Hancock JT, Harter K. The histidine kinase AHK5 integrates endogenous and environmental signals in Arabidopsis guard cells. PLoS ONE. 2008;3:e2491.

    PubMed  PubMed Central  Google Scholar 

  • Diaz VP, Wolff T, Markovic J, Pallardó F, Foyer C. A nuclear glutathione cycle within the cell cycle. Biochem J. 2010;431:169–78.

    Google Scholar 

  • Dietz K, Jacquot J, Harris G. Hubs and bottlenecks in plant molecular signalling networks. New Phytol. 2010;188:919–38.

    PubMed  CAS  Google Scholar 

  • Ding Y, Cao J, Ni L, Zhu Y, Zhang A, Tan M, Jiang M. ZmCPK11 is involved in abscisic acid-induced antioxidant defence and functions upstream of ZmMPK5 in abscisic acid signaling in maize. J Exp Bot. 2013;64:871–84.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dixon DP, Davis BG, Edwards R. Functional divergence in the glutathione transferase superfamily in plants identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Bio Chem. 2002;277:30859–69.

    CAS  Google Scholar 

  • Drerup MM, Schlücking K, Hashimoto K, Manishankar P, Steinhorst L, Kuchitsu K, Kudla J. The Calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF. Mol Plant. 2013;6:559–69.

    PubMed  CAS  Google Scholar 

  • Dubovskaya LV, Bakakina YS, Kolesneva EV, Sodel DL, McAinsh MR, Hetherington AM, Volotovski ID. cGMP-dependent ABA-induced stomatal closure in the ABA-insensitive Arabidopsis mutant abi1-1. New Phytol. 2011;191:57–69.

    PubMed  CAS  Google Scholar 

  • Eun SO, Bae SH, Lee Y. Cortical actin filaments in guard cells respond differently to abscisic acid in wild-type and abi1-1 mutant Arabidopsis. Planta. 2001;212:466–9.

    PubMed  CAS  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol. 2006;171:501–23.

    PubMed  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature. 2003;422:442–6.

    PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell. 2005;17:1866–75.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Foyer CH, Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal. 2009;11:861–905.

    PubMed  CAS  Google Scholar 

  • Foyer CH, Descourvieres P, Kunert KJ. Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ. 1994;17:507–23.

    CAS  Google Scholar 

  • Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR. Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. Plant J. 2003;33:691–705.

    PubMed  CAS  Google Scholar 

  • Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR, Sheen J, Rodriguez PL, Zhu JK. In vitro reconstitution of an abscisic acid signalling pathway. Nature. 2009;462:660–4.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fukaki H, Tasaka M. Hormone interactions during lateral root formation. Plant Mol Biol. 2009;69:437–49.

    PubMed  CAS  Google Scholar 

  • Gaber A. The importance of Arabidopsis glutathione peroxidase 8 for protecting Arabidopsis plant and E. coli cells against oxidative stress. GM Crops Food: Biotechnol Agric Food Chain. 2013;5:1–7.

    Google Scholar 

  • Garg N, Manchanda G. ROS generation in plants: boon or bane? Plant Biosyst. 2009;143:81–96.

    Google Scholar 

  • Geiger D, Maierhofer T, Al-Rasheid KA, Scherzer S, Mumm P, Liese A, Ache P, Wellmann C, Marten I, Grill E, Romeis T, Hedrich R. Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci Signal. 2011;4:ra32.

    PubMed  Google Scholar 

  • Gómez-Cadenas A, Zentella R, Walker-Simmons MK, Ho TH. Gibberellin/abscisic acid antagonism in barley aleurone cells: site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. Plant Cell. 2001;13:667–79.

    PubMed  PubMed Central  Google Scholar 

  • Gonugunta VK, Srivastava N, Raghavendra AS. Cytosolic alkalinization is a common and early messenger preceding the production of ROS and NO during stomatal closure by variable signals, including abscisic acid, methyl jasmonate and chitosan. Plant Signal Behav. 2009;4:561–4.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Guan LM, Zhao J, Scandalios JG. Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. Plant J. 2000;22:87–95.

    PubMed  CAS  Google Scholar 

  • Halliwell B. Free radicals and antioxidants: updating a personal view. Nutr Rev. 2012;70:257–65.

    PubMed  Google Scholar 

  • Hamilton DW, Hills A, Kohler B, Blatt MR. Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc Natl Acad Sci USA. 2000;97:4967–72.

    PubMed  PubMed Central  CAS  Google Scholar 

  • He J, Duan Y, Hua D, Fan G, Wang L, Liu Y, Chen Z, Han L, Qu LJ, Gong Z. DEXH box RNA helicase-mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling. Plant Cell. 2012;24:1815–33.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Heiber I, Cai W, Baier M. Linking chloroplast antioxidant defense to carbohydrate availability: the transcript abundance of stromal ascorbate peroxidase is sugar-controlled via ascorbate biosynthesis. Mol Plant. 2014;7:58–70.

    PubMed  CAS  Google Scholar 

  • Hettenhausen C, Baldwin IT, Wu J. Silencing MPK4 in Nicotiana attenuata enhances photosynthesis and seed production but compromises abscisic acid-induced stomatal closure and guard cell-mediated resistance to Pseudomonas syringae pv tomato DC3000. Plant Physiol. 2012;158:759–76.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hideg É, Barta C, Kálai T, Vass I, Hideg K, Asada K. Detection of singlet oxygen and superoxide with fluorescent sensors in leaves under stress by photoinhibition or UV radiation. Plant Cell Physiol. 2002;43:1154–64.

    PubMed  CAS  Google Scholar 

  • Hirt H. Connecting oxidative stress, auxin, and cell cycle regulation through a plant mitogen-activated protein kinase pathway. Proc Natl Acad Sci USA. 2000;97:2405–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hua D, Wang C, He J, Liao H, Duan Y, Zhu Z, Guo Y, Chen Z, Gong Z. A plasma membrane receptor kinase, GHR1, mediates abscisic acidand hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell. 2012;24:2546–61.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hwang JU, Lee Y. Abscisic acid-induced actin reorganization in guard cells of dayflower is mediated by cytosolic calcium levels and by protein kinase and protein phosphatase activities. Plant Physiol. 2001;125:2120–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J. 2000;24:655–65.

    PubMed  CAS  Google Scholar 

  • Imes D, Mumm P, Böhm J, Al-Rasheid KA, Marten I, Geiger D, Hedrich R. Open stomata 1 (OST1) kinase controls R-type anion channel QUAC1 in Arabidopsis guard cells. Plant J. 2013;74:372–82.

    PubMed  CAS  Google Scholar 

  • Iqbal A, Yabuta Y, Takeda T, Nakano Y, Shigeoka S. Hydroperoxide reduction by thioredoxin-specific glutathione peroxidase isoenzymes of Arabidopsis thaliana. FEBS J. 2006;273:5589–97.

    PubMed  CAS  Google Scholar 

  • Ishibashi Y, Tawaratsumida T, Kondo K, Kasa S, Sakamoto M, Aoki N, Zheng SH, Yuasa T, Iwaya-Inoue M. Reactive oxygen species are involved in gibberellin/abscisic acid signaling in barley aleurone cells. Plant Physiol. 2012;158:1705–14.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Issak M, Okuma E, Munemasa S, Nakamura Y, Mori IC, Murata Y. Neither endogenous abscisic acid nor endogenous jasmonate is involved in salicylic acid-, yeast elicitor-, or chitosan-induced stomatal closure in Arabidopsis thaliana. Biosci Biotechnol Biochem. 2013;77:1111–3.

    PubMed  CAS  Google Scholar 

  • Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Cho D, Lee S, Giordo R, Sritubtim S, et al. MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci USA. 2009;106:20520–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jannat R, Uraji M, Hossain MA, Islam MM, Nakamura Y, Mori IC, Murata Y. Catalases negatively regulate methyl jasmonate signaling in guard cells. J Plant Physiol. 2012;169:1012–6.

    PubMed  CAS  Google Scholar 

  • Jannat R, Uraji M, Morofuji M, Hossain MA, Islam MM, Nakamura Y, Mori IC, Murata Y. The roles of CATALASE2 in abscisic acid signaling in Arabidopsis guard cells. Biosci Biotechnol Biochem. 2011a;75:2034–6.

    PubMed  CAS  Google Scholar 

  • Jannat R, Uraji M, Morofuji M, Islam MM, Bloom RE, Nakamura Y, McClung CR, Schroeder JI, Mori IC, Murata Y. Roles of intracellular hydrogen peroxide accumulation in abscisic acid signaling in Arabidopsis guard cells. J Plant Physiol. 2011b;168:1919–26.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jaspers P, Kangasjärvi J. Reactive oxygen species in abiotic stress signaling. Physiol Plant. 2010;138:405–13.

    PubMed  CAS  Google Scholar 

  • Jiang M, Zhang J. Role of abscissic acid in water stress-induced antioxidant defense in leaves of maize seedlings. Free Radic Res. 2002;36:1001–15.

    PubMed  CAS  Google Scholar 

  • Jiang M, Zhang J. Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defense in leaves of maize seedlings. Plant Cell Environ. 2003;26:929–39.

    PubMed  CAS  Google Scholar 

  • Jiang J, Wang P, An G, Wang P, Song CP. The involvement of a P38-like MAP kinase in ABA-induced and H2O2-mediated stomatal closure in Vicia faba L. Plant Cell Rep. 2008;27:377–85.

    PubMed  CAS  Google Scholar 

  • Jiang K, Sorefan K, Deeks MJ, Bevan MW, Hussey PJ, Hetherington AM. The ARP2/3 complex mediates guard cell actin reorganization and stomatal movement in Arabidopsis. Plant Cell. 2012;24:2031–40.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jiao Y, Sun L, Song Y, Wang L, Liu L, Zhang L, Liu B, Li N, Miao C, Hao F. AtrbohD and AtrbohF positively regulate abscisic acid-inhibited primary root growth by affecting Ca2+ signalling and auxin response of roots in Arabidopsis. J Exp Bot. 2013;64:4183–92.

    PubMed  CAS  Google Scholar 

  • Jiménez A, Hernández JA, Pastori G, del Rı́o LA, Sevilla F. Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol. 1998;118:1327–1335.

    Google Scholar 

  • Joo JH, Bae YS, Lee JS. Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol. 2001;126:1055–60.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jose M, Barrero A, Bruce D, Qian X, Frank G. A role for barley CRYPTOCHROME1 in light regulation of grain dormancy and germination. Plant Cell. 2014;26:1094–104.

    Google Scholar 

  • Joudoi T, Shichiri Y, Kamizono N, Akaike T, Sawa T, Yoshitake J, Yamada N, Iwai S. Nitrated cyclicGMP modulates guard cell signalling in Arabidopsis. Plant Cell. 2013;25:558–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM. Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell. 1997;9:627–40.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kepka M, Benson CL, Gonugunta VK, Nelson KM, Christmann A, Grill E, Abrams SR. Action of natural abscisic acid precursors and catabolites on abscisic acid receptor complexes. Plant Physiol. 2011;157:2108–19.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kim TH, Böhmer M, Hu H, Nishimura N, Schroeder JI. Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol. 2010;61:561–91.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Knetsch ML, Wang M, Snaar-Jagalska BE, Heimovaara-Dijkstra S. Abscisic acid induces mitogen-activated protein kinase activation in barley aleurone protoplasts. Plant Cell. 1996;8:1061–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell. 2007;19:1065–80.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Köhler B, Hills A, Blatt MR. Control of guard cell ion channels by hydrogen peroxide and abscisic acid indicates their action through alternate signaling pathways. Plant Physiol. 2003;131:385–8.

    PubMed  PubMed Central  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA. 2000;97:2940–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kwak JM, Moon JH, Murata Y, Kuchitsu K, Leonhardt N, DeLong A, Schroeder JI. Disruption of a guard cell-expressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in Arabidopsis. Plant Cell. 2002;14:2849–61.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signalling in Arabidopsis. EMBO J. 2003;22:2623–33.

    PubMed  PubMed Central  CAS  Google Scholar 

  • LaIoi C, Apel K, Danon A. Reactive oxygen signaling: the latest news. Curr Opin Plant Biol. 2004;7:323–8.

    Google Scholar 

  • Lemichez E, Wu Y, Sanchez JP, Mettouchi A, Mathur J, Chua NH. Inactivation of AtRac1 by abscisic acid is essential for stomatal closure. Genes Dev. 2001;15:1808–16.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI. Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell. 2004;16:596–615.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994;79:583–93.

    PubMed  CAS  Google Scholar 

  • Leymarie J, Vitkauskaité G, Hoang HH, Gendreau E, Chazoule V, Meimoun P, Corbineau F, El-Maarouf-Bouteau H, Bailly C. Role of reactive oxygen species in the regulation of Arabidopsis seed dormancy. Plant Cell Physiol. 2012;53:96–106.

    PubMed  CAS  Google Scholar 

  • Li SW, Leng Y, Feng L, Zeng XY. Involvement of abscisic acid in regulating antioxidative defense systems and IAA-oxidase activity and improving adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings under cadmium stress. Environ Sci Pollut Res Int. 2014;21:525–37.

    PubMed  CAS  Google Scholar 

  • Liu Y. Roles of mitogen-activated protein kinase cascades in ABA signaling. Plant Cell Rep. 2012;31:1–12.

    PubMed  Google Scholar 

  • Liu Y, Shi L, Ye N, Liu R, Jia W, Zhang J. Nitric oxide-induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in Arabidopsis. New Phytol. 2009;183:1030–42.

    PubMed  CAS  Google Scholar 

  • Liu Y, Ye N, Liu R, Chen M, Zhang J. H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. J Exp Bot. 2010;61:2979–90.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lü D, Wang W, Miao C. ATHK1 acts downstream of hydrogen peroxide to mediate ABA signaling through regulation of calcium channel activity in Arabidopsis guard cells. Chin Sci Bull. 2013;58:336–43.

    Google Scholar 

  • Lu C, Han MH, Guevara-Garcia A, Fedoroff NV. Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid. Proc Natl Acad Sci India Sect B Biol Sci. 2002;99:15812–7.

    CAS  Google Scholar 

  • Lu Z, Liu D, Liu S. Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep. 2007;26:1909–17.

    PubMed  CAS  Google Scholar 

  • Maruta T, Inoue T, Noshi M, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S. Cytosolic ascorbate peroxidase 1 protects organelles against oxidative stress by wounding- and jasmonate-induced H2O2 in Arabidopsis plants. Biochim Biophys Acta. 2012;1820:1901–7.

    PubMed  CAS  Google Scholar 

  • Maxwell DP, Wang Y, McIntosh L. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci USA. 1999;96:8271–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  • May MJ, Leaver CJ. Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures. Plant Physiol. 1993;103:621–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  • McCord J, Fridovich I. Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). J. Bio.chem. 1969;244:6049–6055.

    Google Scholar 

  • Meinhard M, Grill E. Hydrogen peroxide is a regulator of ABI1, a protein phosphatase 2C from Arabidopsis. FEBS Lett. 2001;508:443–6.

    PubMed  CAS  Google Scholar 

  • Meinhard M, Rodriguez PL, Grill E. The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signalling. Planta. 2002;214:775–82.

    PubMed  CAS  Google Scholar 

  • Meyer AJ. The integration of glutathione homeostasis and redox signaling. J Plant Physiol. 2008;165:1390–403.

    PubMed  CAS  Google Scholar 

  • Miao YC, Song CP, Dong FC, Wang XC. ABA-induced hydrogen peroxide generation in guard cells of Vicia faba. Acta Phytophysiol Sinica. 2000;26:53–8 (in Chinese).

    CAS  Google Scholar 

  • Miao Y, Lv D, Wang P, Wang XC, Chen J, Miao C, Song CP. An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell. 2006;18:2749–66.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Millar AH, Mittova V, Kiddle G, Heazlewood JL, Bartoli CG, Theodoulou FL, Foyer CH. Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiol. 2003;133:443–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Miller G, Mittler R. Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot. 2006;98:279–88.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal. 2009;2:ra45.

    Google Scholar 

  • Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7:405–10.

    PubMed  CAS  Google Scholar 

  • Mittler R, Zilinskas BA. Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. J Bio Chem. 1992;267:21802–7.

    CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004;9:490–8.

    PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F. ROS signaling: the new wave? Trends Plant Sci. 2011;16:300–9.

    PubMed  CAS  Google Scholar 

  • Miura K, Hasegawa PM. Sumoylation and abscisic acid signaling. Plant Signal Behav. 2009;4:1176–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM, Murata Y. SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J. 2013;73:91–104.

    CAS  Google Scholar 

  • Møller IM. Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Biol. 2001;52:561–91.

    Google Scholar 

  • Møller IM, Jensen PE, Hansson A. Oxidative modifications to cellular components in plants. Annu Rev Plant Biol. 2007;58:459–81.

    PubMed  Google Scholar 

  • Monshausen GB, Bibikova TN, Messerli MA, Shi C, Gilroy S. Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. Proc. Natl. Acad. Sci. India Sect. B Biol Sci. 2007;104:20996–1001.

    CAS  Google Scholar 

  • Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O, Kwak SS, Kim DH, Nam J, Bahk J, et al. NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci USA. 2003;100:358–63.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mori IC, Murata Y, Yang Y, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR, et al. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure. PLoS Biol. 2006;4:e327.

    PubMed  PubMed Central  Google Scholar 

  • Moubayidin L, Di Mambro R, Sabatini S. Cytokinin–auxin crosstalk. Trends Plant Sci. 2009;14:557–62.

    PubMed  CAS  Google Scholar 

  • Müller K, Carstens AC, Linkies A, Torres MA, Leubner-Metzger G. The NADPH-oxidase AtrbohB plays a role in Arabidopsis seed after-ripening. New Phytol. 2009;184:885–97.

    PubMed  Google Scholar 

  • Munemasa S, Muroyama D, Nagahashi H, Nakamura Y, Mori IC, Murata Y. Regulation of reactive oxygen species-mediated abscisic acid signaling in guard cells and drought tolerance by glutathione. Front Plant Sci. 2013;4:472.

    PubMed  PubMed Central  Google Scholar 

  • Muraoka S, Miura T. Salicylic acid-induced inactivation of creatine kinase in the presence of lactoperoxidase and H2O2. Chem Biol Interact. 2005;151:63–70.

    PubMed  CAS  Google Scholar 

  • Murata Y, Pei ZM, Mori IC, Schroeder J. Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell. 2001;13:2513–23.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell. 2002;14:3089–99.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Myouga F, Hosoda C, Umezawa T, Iizumi H, Kuromori T, Motohashi R, Shono Y, Nagata N, Ikeuchi M, Shinozaki K. A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis. Plant Cell. 2008;20:3148–62.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Navrot N, Rouhier N, Gelhaye E, Jacquot JP. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol Plant. 2007;129:185–95.

    CAS  Google Scholar 

  • Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K. CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature. 2008;452:483–6.

    PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH. A re-evaluation of the ATP: NADPH budget during C3 photosynthesis: a contribution from nitrate assimilation and its associated respiratory activity? J Exp Bot. 1998;49:1895–908.

    CAS  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot. 2002;53:1283–304.

    PubMed  CAS  Google Scholar 

  • Park KY, Jung JY, Park J, Hwang JU, Kim YW, Hwang I, Lee Y. A role for phosphatidylinositol 3-phosphate in abscisic acid-induced reactive oxygen species generation in guard cells. Plant Physiol. 2003;132:92–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science. 2009;324:1068–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Passaia G, Queval G, Bai J, Margis-Pinheiro M, Foyer CH. The effects of redox controls mediated by glutathione peroxidases on root architecture in Arabidopsis thaliana. J Exp Bot. 2014;65:1403–13.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH. Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell. 2003;15:939–51.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature. 2000;406:731–4.

    PubMed  CAS  Google Scholar 

  • Peng CL, Ou ZY, Liu N, Lin GZ. Response to high temperature in flag leaves of super high-yielding rice Pei’ai 64S/E32 and Liangyoupeijiu. Rice Sci. 2005;12:179–86.

    Google Scholar 

  • Pennell RI, Lamb C. Programmed cell death in plants. Plant Cell. 1997;9:1157–68.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pfannschmidt T. Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci. 2003;8:33–41.

    PubMed  CAS  Google Scholar 

  • Pinheiro C, Chaves MM. Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot. 2011;62:869–82.

    PubMed  CAS  Google Scholar 

  • Quan LJ, Zhang B, Shi WW, Li HY. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol. 2008;50:2–18.

    PubMed  CAS  Google Scholar 

  • Rausch T, Wachter A. Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci. 2005;10:503–9.

    PubMed  CAS  Google Scholar 

  • Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H, Knight MR. OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature. 2004;427:858–61.

    PubMed  CAS  Google Scholar 

  • Robert N, Merlot S, N’guyen V, Boisson-Dernier A, Schroeder JI. A hypermorphic mutation in the protein phosphatase 2C HAB1 strongly affects ABA signaling in Arabidopsis. FEBS Lett. 2006;580:4691–6.

    PubMed  CAS  Google Scholar 

  • Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol. 2000;41:1229–34.

    PubMed  CAS  Google Scholar 

  • Saez A, Apostolova N, Gonzalez-Guzman M, Gonzalez-Garcia MP, Nicolas C, Lorenzo O, Rodriguez PL. Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. Plant J. 2004;37:354–69.

    PubMed  CAS  Google Scholar 

  • Saibo NJ, Lourenco T, Oliveira MM. Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann Bot. 2009;103:609–23.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sakamoto A, Okumura T, Kaminaka H, Sumi K, Tanaka K. Structure and differential response to abscisic acid of two promoters for the cytosolic copper/zinc-superoxide dismutase genes, SodCc1 and SodCc2, in rice protoplasts. FEBS Lett. 1995;358:62–6.

    PubMed  CAS  Google Scholar 

  • Santiago J, Dupeux F, Round A, Antoni R, Park SY, Jamin M, Cutler SR, Rodriguez PL, Márquez JA. The abscisic acid receptor PYR1 in complex with abscisic acid. Nature. 2009;462:665–8.

    PubMed  CAS  Google Scholar 

  • Santos M, Gousseau H, Lister C, Foyer C, Creissen G, Mullineaux P. Cytosolic ascorbate peroxidase from Arabidopsis thaliana L. is encoded by a small multigene family. Planta. 1996;198:64–9.

    PubMed  CAS  Google Scholar 

  • Sappl PG, Onate-Sanchez L, Singh KB, Millar AH. Proteomic analysis of glutathione S-transferases of Arabidopsis thaliana reveals differential salicylic acid-induced expression of the plant-specific phi and tau classes. Plant Mol Biol. 2004;54:205–19.

    PubMed  CAS  Google Scholar 

  • Savchenko T, Kolla VA, Wang CQ, Nasafi Z, Hicks DR, Phadungchob B, Chehab WE, Brandizzi F, Froehlich J, Dehesh KB. Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Plant Physiol. 2014;164:1151–60.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, et al. Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics. 2002;2:282–91.

    PubMed  CAS  Google Scholar 

  • Shaikhali J, Heiber I, Seidel T, Ströher E, Hiltscher H, Birkmann S, Dietz KJ, Baier M. The redox-sensitive transcription factor Rap2.4a controls nuclear expression of 2-Cys peroxiredoxin A and other chloroplast antioxidant enzymes. BMC Plant Biol. 2008;8:48.

    PubMed  PubMed Central  Google Scholar 

  • Shi B, Ni L, Zhang A, Cao J, Zhang H, Qin T, Tan M, Zhang J, Jiang M. OsDMI3 is a novel component of abscisic acid signaling in the induction of antioxidant defense in leaves of rice. Mol Plant. 2012;5:1359–74.

    PubMed  CAS  Google Scholar 

  • Shi B, Ni L, Liu Y, Zhang A, Tan M, Jiang M. OsDMI3-mediated activation of OsMPK1 regulates the activities of antioxidant enzymes in abscisic acid signalling in rice. Plant Cell Environ. 2014;37:341–52.

    PubMed  CAS  Google Scholar 

  • Singh, N., Mishra, A., and Jha, B. Over-expression of the peroxisomal ascorbate peroxidase (SbpAPX) gene cloned from halophyte salicornia brachiata confers salt and drought stress tolerance in transgenic tobacco. Mar Biotechnol. 2014;16:321–32.

    Google Scholar 

  • Sirichandra C, Gu D, Hu HC, Davanture M, Lee S, Djaoui M, Valot B, Zivy M, Leung J, Merlot S, Kwak JM. Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett. 2009;583:2982–6.

    PubMed  CAS  Google Scholar 

  • Smirnoff N. Ascorbic acid: metabolism and functions of a multifaceted molecule. Curr Opin Plant Biol. 2000;3:229–35.

    PubMed  CAS  Google Scholar 

  • Song Y, Miao Y, Song CP. Behind the scenes: the roles of reactive oxygen species in guard cells. New Phytol. 2014;201:1121–40.

    PubMed  CAS  Google Scholar 

  • Sutter JU, Sieben C, Hartel A, Eisenach C, Thiel G, Blatt MR. Abscisic acid triggers the endocytosis of the Arabidopsis KAT1 K+ channel and its recycling to the plasma membrane. Curr Biol. 2007;17:1396–402.

    PubMed  CAS  Google Scholar 

  • Takahashi S, Seki M, Ishida J, Satou M, Sakurai T, Narusaka M, Kamiya A, Nakajima M, Enju A, Akiyama K, et al. Monitoring the expression profiles of genes induced by hyperosmotic, high salinity, and oxidative stress and abscisic acid treatment in Arabidopsis cell culture using a full-length cDNA microarray. Plant Mol Biol. 2004;56:29–55.

    PubMed  CAS  Google Scholar 

  • Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L. Local positive feedback regulation determines cell shape in root hair cells. Science. 2008;319:1241–4.

    PubMed  CAS  Google Scholar 

  • Teale WD, Ditengou FA, Dovzhenko AD, Li X, Molendijk AM, Ruperti B, Paponov I, Palme K. Auxin as a model for the integration of hormonal signal processing and transduction. Mol Plant. 2008;1:229–37.

    PubMed  CAS  Google Scholar 

  • Tossi V, Lamattina L, Cassia R. An increase in the concentration of abscisic acid is critical for nitric oxide-mediated plant adaptive responses to UV-B irradiation. New Phytol. 2009;181:871–9.

    PubMed  CAS  Google Scholar 

  • Tripathy BC, Oelmüller R. Reactive oxygen species generation and signaling in plants. Plant Signal Behav. 2012;7:1621–33.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tsukagoshi H, Busch W, Benfey PN. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell. 2010;143:606–16.

    PubMed  CAS  Google Scholar 

  • Tuteja N, Singh MB, Misra MK, Bhalla PL, Tuteja R. Molecular mechanisms of DNA damage and repair: progress in plants. Crit Rev Biochem Mol Biol. 2001;36:337–97.

    PubMed  CAS  Google Scholar 

  • Ubeda-Tomás S, Swarup R, Coates J, Swarup K, Laplaze L, Beemster GT, Hedden P, Bhalerao R, Bennett MJ. Root growth in Arabidopsis requires gibberellin/DELLA signalling in the endodermis. Nature Cell Biol. 2008;10:625–8.

    PubMed  Google Scholar 

  • Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA. 2009;106:17588–93.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Vahisalu T, Kollist H, Wang YF, Nishimura N, Chan WY, Valerio G, Lamminmäki A, Brosché M, Moldau H, Desikan R, Schroeder JI, Kangasjärvi J. SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature. 2008;452:487–91.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Van Breusegem F, Bailey-Serres J, Mittler R. Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiol. 2008;147:978–84.

    PubMed  PubMed Central  Google Scholar 

  • Vandenabeele S, Vanderauwera S, Vuylsteke M, Rombauts S, Langebartels C, Seidlitz HK, Zabeau M, Van Montagu M, Inzé D, Van Breusegem F. Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. Plant J. 2004;39:45–58.

    PubMed  CAS  Google Scholar 

  • Wang PT, Song CP. Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol. 2008;178:703–18.

    PubMed  CAS  Google Scholar 

  • Wang Y, Ying Y, Chen J, Wang X. Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Sci. 2004;167:671–7.

    CAS  Google Scholar 

  • Wang PC, Du YY, An GY, Zhou Y, Miao C, Song CP. Analysis of global expression profiles of Arabidopsis genes under abscisic acid and H2O2 applications. J Integr Plant Biol. 2006;48:62–74.

    CAS  Google Scholar 

  • Wang P, Du Y, Zhao X, Miao Y, Song CP. The MPK6-ERF6-ROS-responsive cis-acting element7/GCC box complex modulates oxidative gene transcription and the oxidative response in Arabidopsis. Plant Physiol. 2013a;161:1392–408.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Chen ZH, Zhang B, Hills A, Blatt MR. PYR/PYL/RCAR abscisic acid receptors regulate K+ and Cl channels through reactive oxygen species-mediated activation of Ca2+ channels at the plasma membrane of intact Arabidopsis guard cells. Plant Physiol. 2013b;163:566–77.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Watkins JM, Hechler PJ, Muday GK. Ethylene-induced flavonol accumulation in guard cells suppresses reactive oxygen species and moderates stomatal aperture. Plant Physiol. 2014;164:1707–17.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Xiang C, Werner BL, E’Lise MC, Oliver DJ. The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol. 2001;126:564–74.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Xiong L, Zhu JK. Regulation of abscisic acid biosynthesis. Plant Physiol. 2003;133:29–36.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshida K, Kaothien P, Matsui T, Kawaoka A, Shinmyo A. Molecular biology and application of plant peroxidase genes. Appl Microbiol Biotechnol. 2003;60:665–70.

    PubMed  CAS  Google Scholar 

  • Yoshida T, Nishimura N, Kitahata N, Kuromori T, Ito T, Asami T, Shinozaki K, Hirayama T. ABA-hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiol. 2006;140:115–26.

    PubMed  PubMed Central  CAS  Google Scholar 

  • You J, Zong W, Li X, Ning J, Hu H, Li X, Xiao J, Xiong L. The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice. J Exp Bot. 2013;64:569–83.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yuasa T, Ichimura K, Mizoguchi T, Shinozaki K. Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase. Plant Cell Physiol. 2001;42:1012–6.

    PubMed  CAS  Google Scholar 

  • Zhang X, Miao YC, An GY, Zhou Y, Shangguan ZP, Gao JF, Song CP. K+ channels inhibited by hydrogen peroxide mediate abscisic acid signalling in Vicia guard cells. Cell Res. 2001a;11:195–202.

    PubMed  CAS  Google Scholar 

  • Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol. 2001b;126:1438–48.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang W, Qin C, Zhao J, Wang X. Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA. 2004a;101:9508–13.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Wang H, Takemiya A, Song CP, Kinoshita T, Shimazaki K. Inhibition of blue light-dependent H+ pumping by abscisic acid through hydrogen peroxide-induced dephosphorylation of the plasma membrane H+-ATPase in guard cell protoplasts. Plant Physiol. 2004b;136:4150–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang W, Fan L-M, Wu WH. Osmo-sensitive and stretch activated calcium-permeable channels in Vicia faba guard cells are regulated by actin dynamics. Plant Physiol. 2007;143:1140–51.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Tan J, Guo Z, Lu S, He S, Shu W, Zhou B. Increased abscisic acid levels in transgenic tobacco over-expressing 9 cis-epoxycarotenoid dioxygenase influence H2O2 and NO production and antioxidant defences. Plant, Cell Environ. 2009a;32:509–19.

    Google Scholar 

  • Zhang Y, Zhu H, Zhang Q, Li M, Yan M, Wang R, Wang L, Welti R, Zhang W, Wang X. Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell. 2009b;21:2357–77.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Han W, De Smet I, Talboys P, Loya R, Hassan A, Rong H, Jurgens G, Paul Knox J, Wang MH. ABA promotes quiescence of the quiescent centre and suppresses stem cell differentiation in the Arabidopsis primary root meristem. Plant J. 2010;64:764–74.

    PubMed  CAS  Google Scholar 

  • Zhang X, Wang L, Meng H, Wen H, Fan Y, Zhao J. Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Plant Mol Biol. 2011;75:365–78.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang ZW, Feng LY, Cheng J, Tang H, Xu F, Zhu F, Zhao ZY, Yuan M, Chen YE, Wang JH, et al. The roles of two transcription factors, ABI4 and CBFA, in ABA and plastid signalling and stress responses. Plant Mol Biol. 2013;83:445–58.

    PubMed  CAS  Google Scholar 

  • Zhao J, Wang X. Arabidopsis phospholipase Dalpha1 interacts with the heterotrimeric G-protein alpha-subunit through a motifanalogous to the DRY motif in G-protein-coupled receptors. J Biol Chem. 2004;279:1794–800.

    PubMed  CAS  Google Scholar 

  • Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Shang Y, Du SY, Wang XF, Wu FQ, et al. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell. 2007;19:3019–36.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu M, Zhu N, Song WY, Harmon AC, Assmann SM, Chen S. Thiol-based redox proteins in Brassica napus guard cell abscisic acid and methyl jasmonate signaling. Plant J. 2014;78:491–515.

    PubMed  CAS  Google Scholar 

  • Zou JJ, Wei FJ, Wang C, Wu JJ, Ratnasekera D, Liu WX, Wu WH. Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress. Plant Physiol. 2010;154:1232–43.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Research in the author’s laboratories was supported by the National Key Basic Special Funds (2012CB114301) and the National Natural Science Foundation of China (90817106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Peng Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bai, L., Wang, P., Song, CP. (2014). Reactive Oxygen Species (ROS) and ABA Signalling. In: Zhang, DP. (eds) Abscisic Acid: Metabolism, Transport and Signaling. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9424-4_10

Download citation

Publish with us

Policies and ethics