Skip to main content

Fluorescence Lifetime Imaging for Diagnostic and Therapeutic Intravital Microscopy

  • Chapter
  • First Online:
Advances in Intravital Microscopy

Abstract

Intravital imaging is now widely performed using wide-field microscopy, endoscopy, and state-of-the-art multiphoton microscopy for research and clinical assessment applications. Fluorescence lifetime imaging is increasingly being used as a complementary technology to greatly enhance the specificity and sensitivity in the analysis of the various fluorophores present within an intravital image. The fluorescence lifetime of a fluorophore. The fluorescence lifetime distribution for a fluorophore is an intrinsic property, arising from the emission of photons of light in the decaying to its original energy state after its molecules are excited by a specific wavelength of light and remain in an excited state for a range of times. This behavior for individual autofluorescent fluorophores, dyes, drugs, fluorescent proteins and antibodies is most frequently summarized in terms of their average fluorescence lifetime. Fluorescence lifetime differences are then used to identify and discriminate between molecules in various applications, including the assessment of drug distribution and metabolism, and in quantifying cell responses for toxicology. Fluorescence lifetime imaging microscopy (FLIM) and tomography involves the spatial representation of the fluorescent lifetimes of all molecules within image collected over a specified time period and resolution. Autofluorescence lifetime differences between normal and cancerous tissues have been used to define surgical margins during intraoperative surgery. Recent advances have enabled the rapid and robust collection of fluorescence lifetime information from tissues with high-resolution at video-rate speeds using endoscopic probes. Fluorescence lifetime imaging, combined with multi-spectral and anisotropic analysis, yields detailed redox state data from within a cell, arising from its metabolic state and enables intravital analysis of the transport and metabolism of fluorescent probes in cells. Intravital fluorescence lifetime imaging is becoming an indispensable diagnostic approach with broad therapeutic and clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amao Y (2003) Probes and polymers for optical sensing of oxygen. Microchim Acta 143:1–12. doi:10.1007/s00604-003-0037-x

    CAS  Google Scholar 

  • Ardeshirpour Y, Chernomordik V, Zielinski R et al (2012) In vivo fluorescence lifetime imaging monitors binding of specific probes to cancer biomarkers. PLoS One 7:e31881. doi:10.1371/journal.pone.0031881

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bakker G-J, Andresen V, Hoffman RM, Friedl P (2012) Fluorescence lifetime microscopy of tumor cell invasion, drug delivery, and cytotoxicity. Methods Enzymol 504:109–125

    CAS  PubMed  Google Scholar 

  • Ballew RM, Demas JN (1989) An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays. Anal Chem 61:30–33. doi:10.1021/ac00176a007

    CAS  Google Scholar 

  • Bastiaens PIH, Squire A (1999) Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol 9:48–52

    CAS  PubMed  Google Scholar 

  • Basuki JS, Duong HTT, Macmillan A et al (2013) Using fluorescence lifetime imaging microscopy to monitor theranostic nanoparticle uptake and intracellular doxorubicin release. ACS Nano 7:10175–10189. doi:10.1021/nn404407g

    CAS  PubMed  Google Scholar 

  • Becker W (2005) Advanced time-correlated single photon counting techniques. Springer, Berlin/New York. doi:10.1007/3-540-28882-1

    Google Scholar 

  • Becker W (2012a) Fluorescence lifetime imaging–techniques and applications. J Microsc 247:119–136. doi:10.1111/j.1365-2818.2012.03618.x

    CAS  PubMed  Google Scholar 

  • Becker W (2012b) The bh TCSPC handbook, 5th edn. Becker & Hickl GmbH, Berlin

    Google Scholar 

  • Becker W, Bergmann A (2006) Timing stability of TCSPC experiments. In: Becker W (ed) Opt. East 2006. International Society for Optics and Photonics, Proc SPIE 6372, p 637209

    Google Scholar 

  • Becker W, Bergmann A (2008) Lifetime-resolved imaging in nonlinear microscopy. In: Masters BR, So PTC (eds) Handbook of biomedical nonlinear optical microscopy. Oxford University Press, Oxford

    Google Scholar 

  • Becker W, Bergmann A, Hink MA et al (2004) Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc Res Tech 63:58–66. doi:10.1002/jemt.10421

    CAS  PubMed  Google Scholar 

  • Berezin MY, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110:2641–2684. doi:10.1021/cr900343z

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bird DK, Yan L, Vrotsos KM et al (2005) Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH. Cancer Res 65:8766–8773. doi:10.1158/0008-5472.CAN-04-3922

    CAS  PubMed  Google Scholar 

  • Bloksgaard M, Brewer JR, Pashkovski E et al (2013) Effect of detergents on the physicochemical properties of skin stratum corneum: a two-photon excitation fluorescence microscopy study. Int J Cosmet Sci. doi:10.1111/ics.12089

    PubMed  Google Scholar 

  • Borst JW, Nougalli-Tonaco I, Hink MA et al (2006) Protein-protein interactions in vivo: use of biosensors based on FRET. In: Geddes CD, Lakowicz J (eds) Reviews in fluorescence. Springer, New York, pp 341–357

    Google Scholar 

  • Bowman RD, Kneas KA, Demas JN, Periasamy A (2003) Conventional, confocal and two-photon fluorescence microscopy investigations of polymer-supported oxygen sensors. J Microsc 211:112–120. doi:10.1046/j.1365-2818.2003.01192.x

    CAS  PubMed  Google Scholar 

  • Brunk UT, Terman A (2002) The mitochondrial-lysosomal axis theory of aging. Eur J Biochem 269:1996–2002. doi:10.1046/j.1432-1033.2002.02869.x

    CAS  PubMed  Google Scholar 

  • Buurman EP, Sanders R, Draaijer A et al (1992) Fluorescence lifetime imaging using a confocal laser scanning microscope. Scanning 14:155–159. doi:10.1002/sca.4950140305

    Google Scholar 

  • Chance B, Schoener B, Oshino R et al (1979) Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals. J Biol Chem 254:4764–4771

    CAS  PubMed  Google Scholar 

  • Chen N-T, Wu C-Y, Chung C-Y et al (2012) Probing the dynamics of doxorubicin-DNA intercalation during the initial activation of apoptosis by fluorescence lifetime imaging microscopy (FLIM). PLoS One 7:e44947. doi:10.1371/journal.pone.0044947

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Y, Mills JD, Periasamy A. Protein localization in living cells and tissues using FRET and FLIM. Differentiation. 2003;71(9–10):528–541.

    Google Scholar 

  • Cole MJ, Siegel J, Webb SED et al (2001) Time-domain whole-field fluorescence lifetime imaging with optical sectioning. J Microsc 203:246–257. doi:10.1046/j.1365-2818.2001.00894.x

    CAS  PubMed  Google Scholar 

  • Collini M, Leo B, Baldini G et al (2002) Probing protein aggregation by time-resolved fluorescence during beta-lactoglobulin crystal growth. Eur Biophys J 31:111–117. doi:10.1007/s00249-002-0208-4

    CAS  PubMed  Google Scholar 

  • Colyer R, Siegmund O, Tremsin A et al (2009) Phasor-based single-molecule fluorescence lifetime imaging using a wide-field photon-counting detector. Proc Soc Photo Opt Instrum Eng. doi:10.1117/12.809496

    PubMed Central  PubMed  Google Scholar 

  • Colyer RA, Siegmund OHW, Tremsin AS et al (2012) Phasor imaging with a widefield photon-counting detector. J Biomed Opt 17:016008. doi:10.1117/1.JBO.17.1.016008

    PubMed Central  PubMed  Google Scholar 

  • Conklin MW, Provenzano PP, Eliceiri KW et al (2009) Fluorescence lifetime imaging of endogenous fluorophores in histopathology sections reveals differences between normal and tumor epithelium in carcinoma in situ of the breast. Cell Biochem Biophys 53:145–157. doi:10.1007/s12013-009-9046-7

    CAS  PubMed  Google Scholar 

  • Damayanti NP, Craig AP, Irudayaraj J (2013) A hybrid FLIM-elastic net platform for label free profiling of breast cancer. Analyst 138:7127–7134. doi:10.1039/c3an01097j

    CAS  PubMed  Google Scholar 

  • Dancik Y, Favre A, Loy CJ et al (2013) Use of multiphoton tomography and fluorescence lifetime imaging to investigate skin pigmentation in vivo. J Biomed Opt 18:26022. doi:10.1117/1.JBO.18.2.026022

    PubMed  Google Scholar 

  • Deka G, Wu W, Kao F (2013) In vivo wound healing diagnosis with second harmonic and fluorescence lifetime imaging. J Biomed Opt 18:061222. doi:10.1117/1.JBO.18.6.061222

    Google Scholar 

  • Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94:L14–L16. doi:10.1529/biophysj.107.120154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dimitrow E, Riemann I, Ehlers A et al (2009) Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis. Exp Dermatol 18:509–515. doi:10.1111/j.1600-0625.2008.00815.x

    PubMed  Google Scholar 

  • Dowling K, Hyde SCW, Dainty JC et al (1997) 2-D fluorescence lifetime imaging using a time-gated image intensifier. Opt Comm 135:27–31

    CAS  Google Scholar 

  • Ehlers A, Riemann I, Stark M, König K (2007) Multiphoton fluorescence lifetime imaging of human hair. Microsc Res Tech 70:154–161. doi:10.1002/jemt.20395

    PubMed  Google Scholar 

  • Elangovan M, Day RN, Periasamy A (2002) Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell. J Microsc 205:3–14

    CAS  PubMed  Google Scholar 

  • Elson DS, Jo JA, Marcu L (2007) Miniaturized side-viewing imaging probe for fluorescence lifetime imaging (FLIM): validation with fluorescence dyes, tissue structural proteins and tissue specimens. New J Phys 9:127. doi:10.1088/1367-2630/9/5/127

    PubMed Central  PubMed  Google Scholar 

  • EreciÅ„ska M, Nelson D, Silver IA (1996) Metabolic and energetic properties of isolated nerve ending particles (synaptosomes). Biochim Biophys Acta 1277:13–34

    PubMed  Google Scholar 

  • Esposito A, Oggier T, Gerritsen H et al (2005) All-solid-state lock-in imaging for wide-field fluorescence lifetime sensing. Opt Express 13:9812–9821

    CAS  PubMed  Google Scholar 

  • Fischer F, Volkmer B, Puschmann S et al (2008) Assessing the risk of skin damage due to femtosecond laser irradiation. J Biophotonics 1:470–477. doi:10.1002/jbio.200810050

    PubMed  Google Scholar 

  • Förster T (2012) Energy migration and fluorescence. 1946. J Biomed Opt 17:011002

    PubMed  Google Scholar 

  • Gafni A, Brand L (1976) Fluorescence decay studies of reduced nicotinamide adenine dinucleotide in solution and bound to liver alcohol dehydrogenase. Biochemistry 15:3165–3171. doi:10.1021/bi00660a001

    CAS  PubMed  Google Scholar 

  • Gaillard ER, Atherton SJ, Eldred G, Dillon J (1995) Photophysical studies on human retinal lipofuscin. Photochem Photobiol 61:448–453

    CAS  PubMed  Google Scholar 

  • Galletly NP, McGinty J, Dunsby C et al (2008) Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin. Br J Dermatol 159:152–161. doi:10.1111/j.1365-2133.2008.08577.x

    CAS  PubMed  Google Scholar 

  • Gehlsen U, Oetke A, Szaszák M et al (2012) Two-photon fluorescence lifetime imaging monitors metabolic changes during wound healing of corneal epithelial cells in vitro. Graefes Arch Clin Exp Ophthalmol 250:1293–1302. doi:10.1007/s00417-012-2051-3

    CAS  PubMed  Google Scholar 

  • Gerritsen HC, Asselbergs MAH, Agronskaia AV, Van Sark WGJHM (2002) Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution. J Microsc 206:218–224. doi:10.1046/j.1365-2818.2002.01031.x

    CAS  PubMed  Google Scholar 

  • Geusens B, Van Gele M, Braat S et al (2010) Flexible nanosomes (SECosomes) enable efficient siRNA delivery in cultured primary skin cells and in the viable epidermis of ex vivo human skin. Adv Funct Mater 20:4077–4090. doi:10.1002/adfm.201000484

    CAS  Google Scholar 

  • Ghukasyan VV, Kao F (2009) Monitoring cellular metabolism with fluorescence lifetime of reduced nicotinamide adenine dinucleotide. J Phys Chem C 113:11532–11540. doi:10.1021/jp810931u

    CAS  Google Scholar 

  • Gratton E, Barbieri BB (1986) Multifrequency phase fluorometry using pulsed sources: theory and applications. Spectroscopy 1:28–36

    CAS  Google Scholar 

  • Hanson K, Behne M, Barry N, Mauro T (2002) Two-photon fluorescence lifetime imaging of the skin stratum corneum pH gradient. Biophys J 83(3):1682–1690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanzon V (1952) Liver cell secretion under normal and pathologic conditions studied by fluorescence microscopy on living rats. Acta Physiol Scand Suppl 28:1–268

    CAS  PubMed  Google Scholar 

  • Heikal AA (2010) Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies. Biomark Med 4:241–263. doi:10.2217/bmm.10.1

    CAS  PubMed Central  PubMed  Google Scholar 

  • Höhn A, Grune T (2013) Lipofuscin: formation, effects and role of macroautophagy. Redox Biol 1:140–144. doi:10.1016/j.redox.2013.01.006

    PubMed Central  PubMed  Google Scholar 

  • Huang S, Heikal AA, Webb WW (2002) Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J 82:2811–2825. doi:10.1016/S0006-3495(02)75621-X

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishikawa-Ankerhold HC, Ankerhold R, Drummen GP. Advanced fluorescence microscopy techniques–FRAP, FLIP, FLAP, FRET and FLIM. Molecules. 2012;17(4):4047–4132.

    Google Scholar 

  • Islam M, Honma M, Nakabayashi T et al (2013) pH dependence of the fluorescence lifetime of FAD in solution and in cells. Int J Mol Sci 14:1952–1963

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jo JA, Fang Q, Marcu L (2005) Ultrafast method for the analysis of fluorescence lifetime imaging microscopy data based on the Laguerre expansion technique. IEEE J Quantum Electron 11:835–845. doi:10.1109/JSTQE.2005.857685

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jung T, Höhn A, Grune T (2010) Lipofuscin: detection and quantification by microscopic techniques. Methods Mol Biol 594:173–193. doi:10.1007/978-1-60761-411-1_13

    CAS  PubMed  Google Scholar 

  • Kao Y-T, Saxena C, He T-F et al (2008) Ultrafast dynamics of flavins in five redox states. J Am Chem Soc 130:13132–13139. doi:10.1021/ja8045469

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koehler M, Speicher M, Lange-Asschenfeldt S et al (2011) Clinical application of multiphoton tomography in combination with confocal laser scanning microscopy for in vivo evaluation of skin diseases. Exp Dermatol 20:589–594

    PubMed  Google Scholar 

  • Köllner M, Wolfrum J (1992) How many photons are necessary for fluorescence-lifetime measurements? Chem Phys Lett 200:199–204

    Google Scholar 

  • König K (2008) Clinical multiphoton tomography. J Biophotonics 1:13–23. doi:10.1002/jbio.200710022

    PubMed  Google Scholar 

  • König K (2012) Hybrid multiphoton multimodal tomography of in vivo human skin. IntraVital 1:11–26. doi:10.4161/intv.21938

    Google Scholar 

  • Konig K, Riemann I (2003) High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution. J Biomed Opt 8:432–439. doi:10.1117/1.1577349

    PubMed  Google Scholar 

  • König K, So PT, Mantulin WW et al (1996) Two-photon excited lifetime imaging of autofluorescence in cells during UVA and NIR photostress. J Microsc 183:197–204

    PubMed  Google Scholar 

  • König K, Schneckenburger H, Hibst R (1999) Time-gated in vivo autofluorescence imaging of dental caries. Cell Mol Biol (Noisy-le-Grand) 45:233–239

    Google Scholar 

  • König K, Uchugonova A, Gorjup E (2011) Multiphoton fluorescence lifetime imaging of 3D-stem cell spheroids during differentiation. Microsc Res Tech 74:9–17. doi:10.1002/jemt.20866

    PubMed  Google Scholar 

  • Labouta HI, Liu DC, Lin LL et al (2011) Gold nanoparticle penetration and reduced metabolism in human skin by toluene. Pharm Res 28:2931–2944. doi:10.1007/s11095-011-0561-z

    CAS  PubMed  Google Scholar 

  • Lakowicz JR, Berndt KW (1991) Lifetime-selective fluorescence imaging using an rf phase-sensitive camera. Rev Sci Instrum 62:1727. doi:10.1063/1.1142413

    CAS  Google Scholar 

  • Lakowicz J, Szmacinski H, Nowaczyk K, Johnson M (1992) Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci 89:1271–1275

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leite-Silva VR, Le Lamer M, Sanchez WY et al (2013) The effect of formulation on the penetration of coated and uncoated zinc oxide nanoparticles into the viable epidermis of human skin in vivo. Eur J Pharm Biopharm 84:297–308. doi:10.1016/j.ejpb.2013.01.020

    CAS  PubMed  Google Scholar 

  • Liebert A, Wabnitz H, Grosenick D et al (2003) Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons. Appl Opt 42:5785. doi:10.1364/AO.42.005785

    CAS  PubMed  Google Scholar 

  • Lin LL, Grice JE, Butler MK et al (2011) Time-correlated single photon counting for simultaneous monitoring of zinc oxide nanoparticles and NAD(P)H in intact and barrier-disrupted volunteer skin. Pharm Res 28:2920–2930. doi:10.1007/s11095-011-0515-5

    CAS  PubMed  Google Scholar 

  • McGinty J, Galletly NP, Dunsby C et al (2010) Wide-field fluorescence lifetime imaging of cancer. Biomed Opt Express 1:627–640. doi:10.1364/BOE.1.000627

    PubMed Central  PubMed  Google Scholar 

  • Meredith P, Riesz J (2007) Radiative relaxation quantum yields for synthetic eumelanin. Photochem Photobiol 79:211–216. doi:10.1111/j.1751-1097.2004.tb00012.x

    Google Scholar 

  • Mizeret J, Wagnières G, Stepinac T, Van Den Bergh H (1997) Endoscopic tissue characterization by frequency-domain fluorescence lifetime imaging (FD-FLIM). Lasers Med Sci 12:209–217. doi:10.1007/BF02765101

    CAS  PubMed  Google Scholar 

  • Munro I, McGinty J, Galletly N et al (2005) Toward the clinical application of time-domain fluorescence lifetime imaging. J Biomed Opt 10:051403. doi:10.1117/1.2102807

    CAS  PubMed  Google Scholar 

  • Nakajima EC, Van Houten B (2013) Metabolic symbiosis in cancer: refocusing the Warburg lens. Mol Carcinog 52:329–337. doi:10.1002/mc.21863

    CAS  PubMed  Google Scholar 

  • Nakashima N, Yoshihara K, Tanaka F, Yagi K (1980) Picosecond fluorescence lifetime of the coenzyme of D-amino acid oxidase. J Biol Chem 255:5261–5263

    CAS  PubMed  Google Scholar 

  • Niesner R, Peker B, Schlüsche P, Gericke K-H (2004) Noniterative biexponential fluorescence lifetime imaging in the investigation of cellular metabolism by means of NAD(P)H autofluorescence. Chemphyschem 5:1141–1149. doi:10.1002/cphc.200400066

    CAS  PubMed  Google Scholar 

  • Nobis M, McGhee EJ, Morton JP et al (2013) Intravital FLIM-FRET imaging reveals dasatinib-induced spatial control of src in pancreatic cancer. Cancer Res 73:4674–4686. doi:10.1158/0008-5472.CAN-12-4545

    CAS  PubMed  Google Scholar 

  • O’Connor D (1984) Time-correlated single photon counting. Academic Press, London

    Google Scholar 

  • Ogikubo S, Nakabayashi T, Adachi T et al (2011) Intracellular pH sensing using autofluorescence lifetime microscopy. J Phys Chem B 115:10385–10390. doi:10.1021/jp2058904

    CAS  PubMed  Google Scholar 

  • Pan X, Hobbs RP, Coulombe PA (2013) The expanding significance of keratin intermediate filaments in normal and diseased epithelia. Curr Opin Cell Biol 25:47–56. doi:10.1016/j.ceb.2012.10.018

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pena A-M, Strupler M, Boulesteix T, Schanne-Klein M-C (2005) Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy. Opt Express 13:6268. doi:10.1364/OPEX.13.006268

    CAS  PubMed  Google Scholar 

  • Perrin F (1929) La fluorescence des solutions. Induction moléculaire – polarisation et durée d’émission, photochimie. Photochimie Ann Phys 12:169–275

    CAS  Google Scholar 

  • Philip J, Carlsson K (2003) Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging. J Opt Soc Am A 20:368. doi:10.1364/JOSAA.20.000368

    Google Scholar 

  • Pollok BA, Heim R (1999) Using GFP in FRET-based applications. Trends Cell Biol 9:57–60

    CAS  PubMed  Google Scholar 

  • Prevo B, Peterman EJG (2014) Förster resonance energy transfer and kinesin motor proteins. Chem Soc Rev 43:1144–1155. doi:10.1039/c3cs60292c

    CAS  PubMed  Google Scholar 

  • Prow TW, Monteiro-Riviere NA, Inman AO et al (2012) Quantum dot penetration into viable human skin. Nanotoxicology 6:173–185. doi:10.3109/17435390.2011.569092

    CAS  PubMed  Google Scholar 

  • Qu X, Wang J, Zhang Z et al (2008) Imaging of cancer cells by multiphoton microscopy using gold nanoparticles and fluorescent dyes. J Biomed Opt 13:031217. doi:10.1117/1.2942373

    PubMed  Google Scholar 

  • Requejo-Isidro J, McGinty J, Munro I et al (2004) High-speed wide-field time-gated endoscopic fluorescence-lifetime imaging. Opt Lett 29:2249–2251

    CAS  PubMed  Google Scholar 

  • Ribou A-C, Vigo J, Salmon J-M (2007) Lifetime of fluorescent pyrene butyric acid probe in single living cells for measurement of oxygen fluctuation. Photochem Photobiol 80:274–280. doi:10.1111/j.1751-1097.2004.tb00083.x

    Google Scholar 

  • Roberts MS, Roberts MJ, Robertson TA et al (2008) In vitro and in vivo imaging of xenobiotic transport in human skin and in the rat liver. J Biophotonics 1:478–493. doi:10.1002/jbio.200810058

    CAS  PubMed  Google Scholar 

  • Roberts MS, Dancik Y, Prow TW et al (2011) Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy. Eur J Pharm Biopharm 77:469–488. doi:10.1016/j.ejpb.2010.12.023

    CAS  PubMed  Google Scholar 

  • Robertson T, Sanchez W, Roberts M (2010) Are commercially available nanoparticles safe when applied to the skin? J Biomed Nanotechnol 6:452–468

    CAS  PubMed  Google Scholar 

  • Romero G, Qiu Y, Murray RA, Moya SE (2013) Study of intracellular delivery of doxorubicin from poly(lactide-co-glycolide) nanoparticles by means of fluorescence lifetime imaging and confocal Raman microscopy. Macromol Biosci 13:234–241. doi:10.1002/mabi.201200235

    CAS  PubMed  Google Scholar 

  • Sanchez W (2013) Changes in the redox state and endogenous fluorescence of in vivo human skin due to intrinsic and photo-aging, measured by multiphoton tomography with fluorescence lifetime imaging. J Biomed Opt 18:61217

    Google Scholar 

  • Sanchez WY, Prow TW, Sanchez WH et al (2010) Analysis of the metabolic deterioration of ex vivo skin from ischemic necrosis through the imaging of intracellular NAD(P)H by multiphoton tomography and fluorescence lifetime imaging microscopy. J Biomed Opt 15:046008

    PubMed  Google Scholar 

  • Schneckenburger H, König K, Kunzi-Rapp K et al (1993) Time-resolved in-vivo fluorescence of photosensitizing porphyrins. J Photochem Photobiol B 21:143–147

    CAS  PubMed  Google Scholar 

  • Seidenari S, Arginelli F, Dunsby C et al (2013) Multiphoton laser tomography and fluorescence lifetime imaging of melanoma: morphologic features and quantitative data for sensitive and specific non-invasive diagnostics. PLoS One 8:e70682. doi:10.1371/journal.pone.0070682

    CAS  PubMed Central  PubMed  Google Scholar 

  • Siegel J, Elson DS, Webb SED et al (2003) Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles. Appl Opt 42:2995–3004

    PubMed  Google Scholar 

  • Skala MC, Riching KM, Bird DK et al (2007a) In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia. J Biomed Opt 12:024014. doi:10.1117/1.2717503

    PubMed Central  PubMed  Google Scholar 

  • Skala MC, Riching KM, Gendron-Fitzpatrick A et al (2007b) In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci U S A 104:19494–19499. doi:10.1073/pnas.0708425104

    CAS  PubMed Central  PubMed  Google Scholar 

  • So PT, König K, Berland K et al (1998) New time-resolved techniques in two-photon microscopy. Cell Mol Biol (Noisy-le-Grand) 44:771–793

    CAS  Google Scholar 

  • Speicher M, Köhler M, König K et al (2010) Clinical application of multiphoton tomography in combination with high-frequency ultrasound for evaluation of skin diseases. J Biophotonics 3:759–773

    PubMed  Google Scholar 

  • Spitz J-A, Yasukuni R, Sandeau N et al (2008) Scanning-less wide-field single-photon counting device for fluorescence intensity, lifetime and time-resolved anisotropy imaging microscopy. J Microsc 229:104–114. doi:10.1111/j.1365-2818.2007.01873.x

    CAS  PubMed  Google Scholar 

  • Straub M, Hell SW (1998) Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope. Appl Phys Lett 73:1769. doi:10.1063/1.122276

    CAS  Google Scholar 

  • Stringari C, Sierra R, Donovan PJ, Gratton E (2012) Label-free separation of human embryonic stem cells and their differentiating progenies by phasor fluorescence lifetime microscopy. J Biomed Opt 17:046012. doi:10.1117/1.JBO.17.4.046012

    PubMed Central  PubMed  Google Scholar 

  • Sun Y, Hatami N, Yee M et al (2010) Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery. J Biomed Opt 15:056022. doi:10.1117/1.3486612

    PubMed Central  PubMed  Google Scholar 

  • Sun Y, Phipps JE, Meier J et al (2013) Endoscopic fluorescence lifetime imaging for in vivo intraoperative diagnosis of oral carcinoma. Microsc Microanal 19:791–798. doi:10.1017/S1431927613001530

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tadrous PJ, Siegel J, French PMW et al (2003) Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer. J Pathol 199:309–317. doi:10.1002/path.1286

    PubMed  Google Scholar 

  • Thorling CA, Dancik Y, Hupple CW et al (2011a) Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo. J Biomed Opt 16:086013. doi:10.1117/1.3614473

    PubMed  Google Scholar 

  • Thorling CA, Liu X, Burczynski FJ et al (2011b) Multiphoton microscopy can visualize zonal damage and decreased cellular metabolic activity in hepatic ischemia-reperfusion injury in rats. J Biomed Opt 16:116011. doi:10.1117/1.3647597

    PubMed  Google Scholar 

  • Thorling CA, Liu X, Burczynski FJ et al (2013) Intravital multiphoton microscopy can model uptake and excretion of fluorescein in hepatic ischemia-reperfusion injury. J Biomed Opt 18:101306. doi:10.1117/1.JBO.18.10.101306

    PubMed  Google Scholar 

  • van Munster E, Gadella T (2005) Fluorescence lifetime imaging microscopy (FLIM). Microsc Tech 95:143–175. doi:10.1007/b102213

    Google Scholar 

  • Vergen J, Hecht C, Zholudeva LV et al (2012) Metabolic imaging using two-photon excited NADH intensity and fluorescence lifetime imaging. Microsc Microanal 18:761–770. doi:10.1017/S1431927612000529

    CAS  PubMed  Google Scholar 

  • Vishwasrao HD, Heikal AA, Kasischke KA, Webb WW (2005) Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy. J Biol Chem 280:25119–25126. doi:10.1074/jbc.M502475200

    CAS  PubMed  Google Scholar 

  • Wakita M, Nishimura G, Tamura M (1995) Some characteristics of the fluorescence lifetime of reduced pyridine nucleotides in isolated mitochondria, isolated hepatocytes, and perfused rat liver in situ. J Biochem 118:1151–1160

    CAS  PubMed  Google Scholar 

  • Wang H-W, Gukassyan V, Chen C et al (2008) Differentiation of apoptosis from necrosis by dynamic changes of reduced nicotinamide adenine dinucleotide fluorescence lifetime in live cells. J Biomed Opt 13:054011. doi:10.1117/1.2975831

    PubMed  Google Scholar 

  • Wang B-G, König K, Halbhuber K-J (2010) Two-photon microscopy of deep intravital tissues and its merits in clinical research. J Microsc 238:1–20. doi:10.1111/j.1365-2818.2009.03330.x

    CAS  PubMed  Google Scholar 

  • Watt RM, Voss EW (1979) Solvent perturbation of the fluorescence of fluorescein bound to specific antibody. Fluorescence quenching of the bound fluorophore by iodide. J Biol Chem 254:1684–1690

    CAS  PubMed  Google Scholar 

  • Weber G (1948) The quenching of fluorescence in liquids by complex formation. Determination of the mean life of the complex. Trans Faraday Soc 44:185. doi:10.1039/tf9484400185

    CAS  Google Scholar 

  • Weber P, Wagner M, Schneckenburger H (2013) Cholesterol dependent uptake and interaction of Doxorubicin in mcf-7 breast cancer cells. Int J Mol Sci 14:8358–8366. doi:10.3390/ijms14048358

    PubMed Central  PubMed  Google Scholar 

  • Weidtkamp-Peters S, Felekyan S, Bleckmann A et al (2009) Multiparameter fluorescence image spectroscopy to study molecular interactions. Photochem Photobiol Sci 8:470–480. doi:10.1039/b903245m

    CAS  PubMed  Google Scholar 

  • Yu J-S, Guo H-W, Wang C-H et al (2011) Increase of reduced nicotinamide adenine dinucleotide fluorescence lifetime precedes mitochondrial dysfunction in staurosporine-induced apoptosis of HeLa cells. J Biomed Opt 16:036008. doi:10.1117/1.3560513

    PubMed  Google Scholar 

  • Yu Y, Lee AMD, Wang H et al (2012) Imaging-guided two-photon excitation-emission-matrix measurements of human skin tissues. J Biomed Opt 17:077004. doi:10.1117/1.JBO.17.7.077004

    PubMed  Google Scholar 

  • Zhong W, Urayama P, Mycek M-A (2003) Imaging fluorescence lifetime modulation of a ruthenium-based dye in living cells: the potential for oxygen sensing. J Phys D Appl Phys 36:1689–1695. doi:10.1088/0022-3727/36/14/306

    CAS  Google Scholar 

  • Zipfel WR, Williams RM, Christie R et al (2003) Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci U S A 100:7075–7080. doi:10.1073/pnas.0832308100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zvyagin AV, Zhao X, Gierden A et al (2008) Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo. J Biomed Opt 13:064031. doi:10.1117/1.3041492

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian National Health & Medical Research Council and the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Washington Y. Sanchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sanchez, W.Y., Song, Z., Becker, W., Koenig, K., Roberts, M.S. (2014). Fluorescence Lifetime Imaging for Diagnostic and Therapeutic Intravital Microscopy. In: Weigert, R. (eds) Advances in Intravital Microscopy. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9361-2_16

Download citation

Publish with us

Policies and ethics