Skip to main content

Active, Dormant, or on the Path to Elimination: What Does a Senescent Cell Do?

  • Chapter
  • First Online:
Tumor Dormancy, Quiescence, and Senescence, Vol. 3

Part of the book series: Tumor Dormancy and Cellular Quiescence and Senescence ((DOQU,volume 3))

  • 525 Accesses

Abstract

Views of the physiological significance of cellular senescence, a coordinated program activated by cells exposed to stress, have been evolving dramatically in recent years. Senescence involves a cell cycle arrest accompanied by morphologic and metabolic changes, and by enhanced cytokine secretion. There is much evidence to indicate that senescence is central in suppressing tumor development, acting to block the proliferation of cells expressing an active oncogene or suffering from damaged DNA. The detection of senescence in additional settings, including inflammation and wound healing, as well as in aging tissues, suggests that this cellular program is involved in a variety of physiologic processes, mostly associated with pathology. Importantly, however, the fundamental nature of this program remains poorly understood. Does senescence represent a state of dormancy or dysfunction, or do senescent cells play an active, designated role within normal, aging and tumorigenic tissues? Are senescent cells retained within tissues, or are they rapidly removed? Is the function of senescence to counter tissue pathology, or is it an aberrant state primarily contributing to disease? Recent studies of senescence in the in vivo setting have provided some important insights into these questions and have highlighted areas requiring further study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aird KM, Zhang G, Li H, Tu Z, Bitler BG, Garipov A, Wu H, Wei Z, Wagner SN, Herlyn M, Zhang R (2013) Suppression of nucleotide metabolism underlies the establishment and maintenance of oncogene-induced senescence. Cell Rep 3:1252–1265

    Article  PubMed  CAS  Google Scholar 

  • Baker DJ, Jeganathan KB, Cameron JD, Thompson M, Juneja S, Kopecka A, Kumar R, Jenkins RB, de Groen PC, Roche P, van Deursen JM (2004) BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat Genet 36:744–749

    Article  PubMed  CAS  Google Scholar 

  • Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–236

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ben-Porath I, Weinberg RA (2004) When cells get stressed: an integrative view of cellular senescence. J Clin Invest 113:8–13

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Braumuller H, Wieder T, Brenner E et al (2013) T-helper-1-cell cytokines drive cancer into senescence. Nature 494:361–365

    Article  PubMed  Google Scholar 

  • Burd CE, Sorrentino JA, Clark KS, Darr DB, Krishnamurthy J, Deal AM, Bardeesy N, Castrillon DH, Beach DH, Sharpless NE (2013) Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)-Luciferase model. Cell 152:340–351

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Caldwell ME, DeNicola GM, Martins CP, Jacobetz MA, Maitra A, Hruban RH, Tuveson DA (2011) Cellular features of senescence during the evolution of human and murine ductal pancreatic cancer. Oncogene 31:1599–1608

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao L, Li W, Kim S, Brodie SG, Deng CX (2003) Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform. Genes Dev 17:201–213

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Collado M, Serrano M (2009) Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10:51–57

    Article  Google Scholar 

  • Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868

    Article  PubMed  CAS  Google Scholar 

  • Coppe JP, Desprez PY, Krtolica A, Campisi J (2009) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    Article  Google Scholar 

  • Deschenes-Simard X, Gaumont-Leclerc MF, Bourdeau V, Lessard F, Moiseeva O, Forest V, Igelmann S, Mallette FA, Saba-El-Leil MK, Meloche S, Saad F, Mes-Masson AM, Ferbeyre G (2013) Tumor suppressor activity of the ERK/MAPK pathway by promoting selective protein degradation. Genes Dev 27:900–915

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Erez N, Truitt M, Olson P, Arron ST, Hanahan D (2010) Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17:135–147

    Article  PubMed  CAS  Google Scholar 

  • Guerra C, Collado M, Navas C, Schuhmacher AJ, Hernandez-Porras I, Canamero M, Rodriguez-Justo M, Serrano M, Barbacid M (2011) Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell 19:728–739

    Article  PubMed  CAS  Google Scholar 

  • Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319:1352–1355

    Article  PubMed  CAS  Google Scholar 

  • Jackson JG, Pant V, Li Q, Chang LL, Quintas-Cardama A, Garza D, Tavana O, Yang P, Manshouri T, Li Y, El-Naggar AK, Lozano G (2012) p53-mediated senescence impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer. Cancer Cell 21:793–806

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jun JI, Lau LF (2010) The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol 12:676–685

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kang TW, Yevsa T, Woller N et al (2011) Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479:547–551

    Article  PubMed  CAS  Google Scholar 

  • Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, Onder TT, Wang ZC, Richardson AL, Weinberg RA, Orimo A (2010) Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci U S A 107:20009–20014

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, Yee H, Zender L, Lowe SW (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134:657–667

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24:2463–2479

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Le ON, Rodier F, Fontaine F, Coppe JP, Campisi J, DeGregori J, Laverdiere C, Kokta V, Haddad E, Beausejour CM (2010) Ionizing radiation-induced long-term expression of senescence markers in mice is independent of p53 and immune status. Aging Cell 9:398–409

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lee KE, Bar-Sagi D (2010) Oncogenic KRas suppresses inflammation-associated senescence of pancreatic ductal cells. Cancer Cell 18:448–458

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh DF, Bolden JE, Zhao Z, Thapar V, Joyce JA, Krizhanovsky V, Lowe SW (2013) Non-cell-autonomous tumor suppression by p53. Cell 153:449–460

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Narita M (2007) Cellular senescence and chromatin organisation. Br J Cancer 96:686–691

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Narita M, Young AR (2009) Autophagy facilitates oncogene-induced senescence. Autophagy 5:1046–1047

    Article  PubMed  CAS  Google Scholar 

  • Nelson G, Wordsworth J, Wang C, Jurk D, Lawless C, Martin-Ruiz C, von Zglinicki T (2012) A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11:345–349

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Paradis V, Youssef N, Dargere D, Ba N, Bonvoust F, Deschatrette J, Bedossa P (2001) Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas. Hum Pathol 32:327–332

    Article  PubMed  CAS  Google Scholar 

  • Rakhra K, Bachireddy P, Zabuawala T, Zeiser R, Xu L, Kopelman A, Fan AC, Yang Q, Braunstein L, Crosby E, Ryeom S, Felsher DW (2010) CD4(+) T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell 18:485–498

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Reimann M, Lee S, Loddenkemper C, Dorr JR, Tabor V, Aichele P, Stein H, Dorken B, Jenuwein T, Schmitt CA (2010) Tumor stroma-derived TGF-beta limits myc-driven lymphomagenesis via Suv39h1-dependent senescence. Cancer Cell 17:262–272

    Article  PubMed  CAS  Google Scholar 

  • Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rodier F, Coppe JP, Patil CK, Hoeijmakers WA, Munoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11:973–979

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sagiv A, Biran A, Yon M, Simon J, Lowe SW, Krizhanovsky V (2013) Granule exocytosis mediates immune surveillance of senescent cells. Oncogene 32:1971–1977

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shelton DN, Chang E, Whittier PS, Choi D, Funk WD (1999) Microarray analysis of replicative senescence. Curr Biol 9:939–945

    Article  PubMed  CAS  Google Scholar 

  • Tokarsky-Amiel R, Azazmeh N, Helman A, Stein Y, Hassan A, Maly A, Ben-Porath I (2013) Dynamics of senescent cell formation and retention revealed by p14ARF induction in the epidermis. Cancer Res 73:2829–2839

    Google Scholar 

  • Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ittai Ben-Porath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ben-Porath, I. (2014). Active, Dormant, or on the Path to Elimination: What Does a Senescent Cell Do?. In: Hayat, M. (eds) Tumor Dormancy, Quiescence, and Senescence, Vol. 3. Tumor Dormancy and Cellular Quiescence and Senescence, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9325-4_1

Download citation

Publish with us

Policies and ethics