Skip to main content

Carbon Monoxide. Toxic Gas and Fuel for Anaerobes and Aerobes: Carbon Monoxide Dehydrogenases

  • Chapter
  • First Online:
The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment

Part of the book series: Metal Ions in Life Sciences ((MILS,volume 14))

Abstract

Carbon monoxide (CO) pollutes the atmosphere and is toxic for respiring organisms including man. But CO is also an energy and carbon source for phylogenetically diverse microbes living under aerobic and anaerobic conditions. Use of CO as metabolic fuel for microbes relies on enzymes like carbon monoxide dehydrogenase (CODH) and acetyl-CoA synthase (ACS), which catalyze conversions resembling processes that eventually initiated the dawn of life.

CODHs catalyze the (reversible) oxidation of CO with water to CO2 and come in two different flavors with unprecedented active site architectures. Aerobic bacteria employ a Cu- and Mo-containing CODH in which Cu activates CO and Mo activates water and takes up the two electrons generated in the reaction. Anaerobic bacteria and archaea use a Ni- and Fe-containing CODH, where Ni activates CO and Fe provides the nucleophilic water. Ni- and Fe-containing CODHs are frequently associated with ACS, where the CODH component reduces CO2 to CO and ACS condenses CO with a methyl group and CoA to acetyl-CoA.

Our current state of knowledge on how the three enzymes catalyze these reactions will be summarized and the different strategies of CODHs to achieve the same task within different active site architectures compared.

Please cite as: Met. Ions Life Sci. 14 (2014) 37–69

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Burch, Phys. Chem. Chem. Phys. 2006, 8, 5483–5500.

    CAS  PubMed  Google Scholar 

  2. A. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek, D. L. DuBois, M. Dupuis, J. G. Ferry, E. Fujita, R. Hille, P. J. A. Kenis, C. A. Kerfeld, R. H. Morris, C. H. F. Peden, A. R. Portis, S. W. Ragsdale, T. B. Rauchfuss, J. N. H. Reek, L. C. Seefeldt, R. K. Thauer, G. L. Waldrop, Chem. Rev. 2013, 113, 6621–6658.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. M. A. K. Khalil, J. P. Pinto, M. J. Shearer, Chemosphere: Global Change Sci. 1999, 1, xi–xiii.

    Google Scholar 

  4. C. Huber, G. Wachtershauser, Science 1997, 276, 245–247.

    CAS  PubMed  Google Scholar 

  5. W. Martin, M. J. Russell, Phil. Trans. Roy. Soc. B 2007, 362, 1887–1925.

    CAS  Google Scholar 

  6. P. J. Crutzen, L. T. Gidel, J. Geophys. Res. 1983, 88, 6641–6661.

    CAS  Google Scholar 

  7. T. G. Sokolova, A. M. Henstra, J. Sipma, S. N. Parshina, A. J. M. Stams, A. V. Lebedinsky, FEMS. Microbiol. Ecol. 2009, 68, 131–141.

    CAS  PubMed  Google Scholar 

  8. M. A. K. Khalil, R. A. Rasmussen, Chemosphere 1990, 20, 227–242.

    CAS  Google Scholar 

  9. G. M. King, C. F. Weber, Nat. Rev. Microbiol. 2007, 5, 107–118.

    CAS  PubMed  Google Scholar 

  10. S. W. Ryter, L. E. Otterbein, Bioessays 2004, 26, 270–280.

    CAS  PubMed  Google Scholar 

  11. B. Y. Chin, L. E. Otterbein, Curr. Opin. Pharmacol. 2009, 9, 490–500.

    CAS  PubMed  Google Scholar 

  12. Y. Lu, M. A. K. Khalil, Chemosphere 1993, 26, 641–655.

    CAS  Google Scholar 

  13. R. Conrad, Microbiol. Rev. 1996, 60, 609–640.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. G. M. King, Chemosphere: Global Change Sci. 1999, 1, 53–63.

    CAS  Google Scholar 

  15. O. Meyer, H. G. Schlegel, Annu. Rev. Microbiol. 1983, 37, 277–310.

    CAS  PubMed  Google Scholar 

  16. S. W. Park, E. H. Hwang, H. Park, J. A. Kim, J. Heo, K. H. Lee, T. Song, E. Kim, Y. T. Ro, S. W. Kim, Y. M. Kim, J. Bacteriol. 2003, 185, 142–147.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. S. W. Ragsdale, Ann. N. Y. Acad. Sci. 2008, 1125, 129–136.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. G. Fuchs, Ann. Rev. Microbiol. 2011, 65, 631–658.

    CAS  Google Scholar 

  19. S. W. Ragsdale, Crit. Rev. Biochem. Mol. Biol. 2004, 39, 165–195.

    CAS  PubMed  Google Scholar 

  20. B. Kruger, O. Meyer, Arch. Microbiol. 1984, 139, 402–408.

    Google Scholar 

  21. C. M. Lyons, P. Justin, J. Colby, E. Williams, J. Gen. Microbiol. 1984, 130, 1097–1105.

    CAS  Google Scholar 

  22. G. M. King, Appl. Environ. Microbiol. 2003, 69, 7266–7272.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. S. E. Hoeft, J. S. Blum, J. F. Stolz, F. R. Tabita, B. Witte, G. M. King, J. M. Santini, R. S. Oremland, Int. J. Syst. Evol. Microbiol. 2007, 57, 504–512.

    CAS  PubMed  Google Scholar 

  24. M. A. Moran, A. Buchan, J. M. Gonzalez, J. F. Heidelberg, W. B. Whitman, R. P. Kiene, J. R. Henriksen, G. M. King, R. Belas, C. Fuqua, L. Brinkac, M. Lewis, S. Johri, B. Weaver, G. Pai, J. A. Eisen, E. Rahe, W. M. Sheldon, W. Y. Ye, T. R. Miller, J. Carlton, D. A. Rasko, I. T. Paulsen, Q. H. Ren, S. C. Daugherty, R. T. Deboy, R. J. Dodson, A. S. Durkin, R. Madupu, W. C. Nelson, S. A. Sullivan, M. J. Rosovitz, D. H. Haft, J. Selengut, N. Ward, Nature 2004, 432, 910–913.

    CAS  PubMed  Google Scholar 

  25. K. Frunzke, O. Meyer, Arch. Microbiol. 1990, 154, 168–174.

    CAS  Google Scholar 

  26. S. W. Ragsdale, E. Pierce, Biochim. Biophys. Acta 2008, 1784, 1873–1898.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. E. Oelgeschlaeger, M. Rother, Arch. Microbiol. 2008, 190, 257–269.

    CAS  Google Scholar 

  28. D. A. Grahame, E. Demoll, Biochemistry 1995, 34, 4617–4624.

    CAS  PubMed  Google Scholar 

  29. R. Rabus, T. A. Hansen, F. Widdel, The Prokaryotes - A Handbook on the Biology of Bacteria, Eds S. F. M. Dworkin, H. Rosenberg, K.-H. Schleifer, E. Stackebrandt, Springer, New York, 2006.

    Google Scholar 

  30. J. Sipma, A. M. Henstra, S. N. Parshina, P. N. L. Lens, G. Lettinga, A. J. M. Stams, Crit. Rev. Biotechnol. 2006, 26, 41–65.

    CAS  PubMed  Google Scholar 

  31. A. Jensen, K. Finster, Anton. Leeuw. Int. J. G. 2005, 87, 339–353.

    CAS  Google Scholar 

  32. R. L. Kerby, P. W. Ludden, G. P. Roberts, J. Bacteriol. 1995, 177, 2241–2244.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. V. A. Svetlichny, T. G. Sokolova, M. Gerhardt, M. Ringpfeil, N. A. Kostrikina, G. A. Zavarzin, Syst. Appl. Microbiol. 1991, 14, 254–260.

    Google Scholar 

  34. V. Svetlitchnyi, C. Peschel, G. Acker, O. Meyer, J. Bacteriol. 2001, 183, 5134–5144.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. J. D. Fox, Y. P. He, D. Shelver, G. P. Roberts, P. W. Ludden, J. Bacteriol. 1996, 178, 6200–6208.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. C. Welte, U. Deppenmeier, Biochim. Biophys. Acta 2013, 1873, 1130–1147.

    Google Scholar 

  37. R. K. Thauer, Microbiology 1998, 144, 2377–2406.

    CAS  PubMed  Google Scholar 

  38. D. A. Grahame, J. Biol. Chem. 1991, 266, 22227–22233.

    CAS  PubMed  Google Scholar 

  39. H. Dobbek, L. Gremer, O. Meyer, R. Huber, in Handbook of Metalloproteins, Eds A. Messerschmidt, R. Huber, T. Poulos, K. Wieghardt, John Wiley & Sons, Ltd, Chichester, 2001, Vol. 2, pp. 1136–1147.

    Google Scholar 

  40. R. Hille, Dalton Trans. 2013, 42, 3029–3042.

    CAS  PubMed  Google Scholar 

  41. M. J. Romao, M. Archer, I. Moura, J. J. Moura, J. LeGall, R. Engh, M. Schneider, P. Hof, R. Huber, Science 1995, 270, 1170–1176.

    CAS  PubMed  Google Scholar 

  42. M. J. Romao, Dalton Trans. 2009, 4053–4068.

    Google Scholar 

  43. H. Dobbek, R. Huber, in Metal Ions in Biological Systems, Vol. 39, Eds A. Sigel, H. Sigel, Marcel Dekker, Inc, New York, 2002, pp. 165–196.

    Google Scholar 

  44. H. Dobbek, Coord. Chem. Rev. 2011, 255, 1104–1116.

    CAS  Google Scholar 

  45. A. Magalon, J. G. Fedor, A. Walburger, J. H. Weiner, Coord. Chem. Rev. 2011, 255, 1159–1178.

    CAS  Google Scholar 

  46. N. Wagener, A. J. Pierik, A. Ibdah, R. Hille, H. Dobbek, Proc. Natl. Acad. Sci. USA 2009, 106, 11055–11060.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. O. Meyer, K. V. Rajagopalan, J. Bacteriol. 1984, 157, 643–648.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. O. Meyer, L. Gremer, R. Ferner, M. Ferner, H. Dobbek, M. Gnida, W. Meyer-Klaucke, R. Huber, Biol. Chem. 2000, 381, 865–876.

    CAS  PubMed  Google Scholar 

  49. H. Dobbek, L. Gremer, O. Meyer, R. Huber, Proc. Natl. Acad. Sci. USA 1999, 96, 8884–8889.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. H. Dobbek, L. Gremer, R. Kiefersauer, R. Huber, O. Meyer, Proc. Natl. Acad. Sci. USA 2002, 99, 15971–15976.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. M. J. Lorite, J. Tachil, J. Sanjuan, O. Meyer, E. J. Bedmar, Appl. Environ. Microbiol. 2000, 66, 1871–1876.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. P. Hänzelmann, H. Dobbek, L. Gremer, R. Huber, O. Meyer, J. Mol. Biol. 2000, 301, 1221–1235.

    PubMed  Google Scholar 

  53. J. Wilcoxen, B. Zhang, R. Hille, Biochemistry 2011, 50, 1910–1916.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. C. C. Page, C. C. Moser, X. Chen, P. L. Dutton, Nature 1999, 402, 47–52.

    CAS  PubMed  Google Scholar 

  55. B. Zhang, C. F. Hemann, R. Hille, J. Biol. Chem. 2010, 285, 12571–12578.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. M. Shanmugam, J. Wilcoxen, D. Habel-Rodriguez, G. E. Cutsail, M. L. Kirk, B. M. Hoffman, R. Hille, J. Am. Chem. Soc. 2013, 135, 17775–17782.

    CAS  PubMed  Google Scholar 

  57. C. Gourlay, D. J. Nielsen, J. M. White, S. Z. Knottenbelt, M. L. Kirk, C. G. Young, J. Am. Chem. Soc. 2006, 128, 2164–2165.

    CAS  PubMed  Google Scholar 

  58. J. Wilcoxen, R. Hille, J. Biol. Chem. 2013, 288, 36052–36060.

    CAS  PubMed  Google Scholar 

  59. M. Gnida, R. Ferner, L. Gremer, O. Meyer, W. Meyer-Klaucke, Biochemistry 2003, 42, 222–230.

    CAS  PubMed  Google Scholar 

  60. M. Hofmann, J. K. Kassube, T. Graf, J. Biol. Inorg. Chem. 2005, 10, 490–495.

    CAS  PubMed  Google Scholar 

  61. P. E. M. Siegbahn, A. F. Shestakov, J. Comput. Chem. 2005, 26, 888–898.

    CAS  PubMed  Google Scholar 

  62. B. Santiago, O. Meyer, FEMS Microbiol. Lett. 1996, 142, 309–310.

    CAS  Google Scholar 

  63. M. Rohde, F. Mayer, S. Jacobitz, O. Meyer, FEMS Microbiol. Lett. 1985, 28, 141–144.

    CAS  Google Scholar 

  64. F. Spreitler, C. Brock, A. Pelzmann, O. Meyer, J. Kohler, Chembiochem. 2010, 11, 2419–2423.

    CAS  PubMed  Google Scholar 

  65. M. Resch, H. Dobbek, O. Meyer, J. Biol. Inorg. Chem. 2005, 10, 518–528.

    CAS  PubMed  Google Scholar 

  66. J. Wilcoxen, S. Snider, R. Hille, J. Am. Chem. Soc. 2011, 133, 12934–12936.

    CAS  PubMed  Google Scholar 

  67. B. W. Stein, M. L. Kirk, Chem. Comm. 2014, 50, 1104–1106.

    CAS  PubMed  Google Scholar 

  68. K. Okamoto, K. Matsumoto, R. Hille, B. T. Eger, E. F. Pai, T. Nishino, Proc. Natl. Acad. Sci. USA 2004, 101, 7931–7936.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. I. Bonin, B. M. Martins, V. Purvanov, S. Fetzner, R. Huber, H. Dobbek, Structure 2004, 12, 1425–1435.

    CAS  PubMed  Google Scholar 

  70. G. B. Diekert, E. G. Graf, R. K. Thauer, Arch. Microbiol. 1979, 122, 117–120.

    CAS  Google Scholar 

  71. H. L. Drake, S. I. Hu, H. G. Wood, J. Biol. Chem. 1980, 255, 7174–7180.

    CAS  PubMed  Google Scholar 

  72. J. G. Ferry, Ann. Rev. Microbiol. 1995, 49, 305–333.

    CAS  Google Scholar 

  73. S. W. Ragsdale, Subcell. Biochem. 2000, 35, 487–518.

    CAS  PubMed  Google Scholar 

  74. P. A. Lindahl, Biochemistry 2002, 41, 2097–2105.

    CAS  PubMed  Google Scholar 

  75. C. L. Drennan, J. W. Peters, Curr. Opin. Struct. Biol. 2003, 13, 220–226.

    CAS  PubMed  Google Scholar 

  76. A. Volbeda, J. C. Fontecilla-Camps, J. Biol. Inorg. Chem. 2004, 9, 525–532.

    CAS  PubMed  Google Scholar 

  77. C. L. Drennan, T. I. Doukov, S. W. Ragsdale, J. Biol. Inorg. Chem. 2004, 9, 511–515.

    CAS  PubMed  Google Scholar 

  78. Y. Kung, C. L. Drennan, Curr. Opin. Chem. Biol. 2011, 15, 276–283.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. D. Bonam, P. W. Ludden, J. Biol. Chem. 1987, 262, 2980–2987.

    CAS  PubMed  Google Scholar 

  80. M. Wu, Q. Ren, A. S. Durkin, S. C. Daugherty, L. M. Brinkac, R. J. Dodson, R. Madupu, S. A. Sullivan, J. F. Kolonay, D. H. Haft, W. C. Nelson, L. J. Tallon, K. M. Jones, L. E. Ulrich, J. M. Gonzalez, I. B. Zhulin, F. T. Robb, J. A. Eisen, PLoS Genet. 2005, 1, e65.

    PubMed Central  PubMed  Google Scholar 

  81. V. Svetlitchnyi, H. Dobbek, W. Meyer-Klaucke, T. Meins, B. Thiele, P. Romer, R. Huber, O. Meyer, Proc. Natl. Acad. Sci. USA 2004, 101, 446–451.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. H. Dobbek, V. Svetlitchnyi, L. Gremer, R. Huber, O. Meyer, Science 2001, 293, 1281–1285.

    CAS  PubMed  Google Scholar 

  83. C. L. Drennan, J. Heo, M. D. Sintchak, E. Schreiter, P. W. Ludden, Proc. Natl. Acad. Sci. USA 2001, 98, 11973–11978.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. H. B. Gray, J. R. Winkler, Proc. Natl. Acad. Sci. USA 2005, 102, 3534–3539.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. J. Feng, P. A. Lindahl, Biochemistry 2004, 43, 1552–1559.

    CAS  PubMed  Google Scholar 

  86. Z. G. Hu, N. J. Spangler, M. E. Anderson, J. Q. Xia, P. W. Ludden, P. A. Lindahl, E. Munch, J. Am. Chem. Soc. 1996, 118, 830–845.

    CAS  Google Scholar 

  87. P. A. Lindahl, E. Munck, S. W. Ragsdale, J. Biol. Chem. 1990, 265, 3873–3879.

    CAS  PubMed  Google Scholar 

  88. N. J. Spangler, P. A. Lindahl, V. Bandarian, P. W. Ludden, J. Biol. Chem. 1996, 271, 7973–7977.

    CAS  PubMed  Google Scholar 

  89. V. C. Wang, M. Can, E. Pierce, S. W. Ragsdale, F. A. Armstrong, J. Am. Chem. Soc. 2013, 135, 2198–2206.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. P. A. Lindahl, S. W. Ragsdale, E. Munck, J. Biol. Chem. 1990, 265, 3880–3888.

    CAS  PubMed  Google Scholar 

  91. P. A. Lindahl, J. Inorg. Biochem. 2012, 106, 172–178.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. P. Amara, J. M. Mouesca, A. Volbeda, J. C. Fontecilla-Camps, Inorg. Chem. 2011, 50, 1868–1878.

    CAS  PubMed  Google Scholar 

  93. D. M. Fraser, P. A. Lindahl, Biochemistry 1999, 38, 15706–15711.

    CAS  PubMed  Google Scholar 

  94. J. H. Jeoung, H. Dobbek, Science 2007, 318, 1461–1464.

    CAS  PubMed  Google Scholar 

  95. J. H. Jeoung, H. Dobbek, J. Biol. Inorg. Chem. 2012, 17, 167–173.

    CAS  PubMed  Google Scholar 

  96. P. H. Wang, M. Bruschi, L. De Gioia, J. Blumberger, J. Am. Chem. Soc. 2013, 135, 9493–9502.

    CAS  PubMed  Google Scholar 

  97. Y. Kung, T. I. Doukov, J. Seravalli, S. W. Ragsdale, C. L. Drennan, Biochemistry 2009, 48, 7432–7440.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. J. H. Jeoung, H. Dobbek, J. Am. Chem. Soc. 2009, 131, 9922–9923.

    CAS  PubMed  Google Scholar 

  99. P. M. Sheridan, L. M. Ziurys, J. Chem. Phys. 2003, 118, 6370–6379.

    CAS  Google Scholar 

  100. W. Gong, B. Hao, Z. Wei, D. J. Ferguson, Jr., T. Tallant, J. A. Krzycki, M. K. Chan, Proc. Natl. Acad. Sci. USA 2008, 105, 9558–9563.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. J. Seravalli, S. W. Ragsdale, J. Biol. Chem. 2008, 283, 8384–8394.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. M. Kumar, S. W. Ragsdale, J. Am. Chem. Soc. 1995, 117, 11604–11605.

    CAS  Google Scholar 

  103. T. C. Brunold, J. Biol. Inorg. Chem. 2004, 9, 533–541.

    CAS  PubMed  Google Scholar 

  104. D. A. Grahame, Trends Biochem. Sci. 2003, 28, 221–224.

    CAS  PubMed  Google Scholar 

  105. G. Bender, E. Pierce, J. A. Hill, J. E. Darty, S. W. Ragsdale, Metallomics 2011, 3, 797–815.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. E. L. Hegg, Acc. Chem. Res. 2004, 37, 775–783.

    CAS  PubMed  Google Scholar 

  107. P. A. Lindahl, J. Biol. Inorg. Chem. 2004, 9, 516–524.

    Google Scholar 

  108. S. W. Ragsdale, J. Inorg. Biochem. 2007, 101, 1657–1666.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. P. A. Lindahl, B. Chang, Orig. Life Evol. Biosph. 2001, 31, 403–434.

    CAS  PubMed  Google Scholar 

  110. S. Lange, G. Fuchs, Eur. J. Biochem. 1987, 163, 147–154.

    CAS  PubMed  Google Scholar 

  111. C. Darnault, A. Volbeda, E. J. Kim, P. Legrand, X. Vernede, P. A. Lindahl, J. C. Fontecilla-Camps, Nat. Struct. Biol. 2003, 10, 271–279.

    CAS  PubMed  Google Scholar 

  112. T. I. Doukov, T. M. Iverson, J. Seravalli, S. W. Ragsdale, C. L. Drennan, Science 2002, 298, 567–572.

    CAS  PubMed  Google Scholar 

  113. W. K. Russell, C. M. V. Stalhandske, J. Q. Xia, R. A. Scott, P. A. Lindahl, J. Am. Chem. Soc. 1998, 120, 7502–7510.

    CAS  Google Scholar 

  114. J. Seravalli, Y. M. Xiao, W. W. Gu, S. P. Cramer, W. E. Antholine, V. Krymov, G. J. Gerfen, S. W. Ragsdale, Biochemistry 2004, 43, 3944–3955.

    CAS  PubMed  Google Scholar 

  115. T. I. Doukov, L. C. Blasiak, J. Seravalli, S. W. Ragsdale, C. L. Drennan, Biochemistry 2008, 47, 3474–3483.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. X. S. Tan, P. A. Lindahl, J. Biol. Inorg. Chem. 2008, 13, 771–778.

    CAS  PubMed  Google Scholar 

  117. X. S. Tan, H. K. Loke, S. Fitch, P. A. Lindahl, J. Am. Chem. Soc. 2005, 127, 5833–5839.

    CAS  PubMed  Google Scholar 

  118. X. S. Tan, A. Volbeda, J. C. Fontecilla-Camps, P. A. Lindahl, J. Biol. Inorg. Chem. 2006, 11, 371–378.

    CAS  PubMed  Google Scholar 

  119. E. L. Maynard, P. A. Lindahl, J. Am. Chem. Soc. 1999, 121, 9221–9222.

    CAS  Google Scholar 

  120. J. Seravalli, S. W. Ragsdale, Biochemistry 2000, 39, 1274–1277.

    CAS  PubMed  Google Scholar 

  121. X. Tan, C. Sewell, Q. Yang, P. A. Lindahl, J. Am. Chem. Soc. 2003, 125, 318–319.

    CAS  PubMed  Google Scholar 

  122. D. P. Barondeau, P. A. Lindahl, J. Am. Chem. Soc. 1997, 119, 3959–3970.

    CAS  Google Scholar 

  123. W. S. Shin, M. E. Anderson, P. A. Lindahl, J. Am. Chem. Soc. 1993, 115, 5522–5526.

    CAS  Google Scholar 

  124. T. Shanmugasundaram, G. K. Kumar, H. G. Wood, Biochemistry 1988, 27, 6499–6503.

    CAS  PubMed  Google Scholar 

  125. S. W. Ragsdale, H. G. Wood, J. Biol. Chem. 1985, 260, 3970–3977.

    CAS  PubMed  Google Scholar 

  126. J. Seravalli, W. W. Gu, A. Tam, E. Strauss, T. P. Begley, S. P. Cramer, S. W. Ragsdale, Proc. Natl. Acad. Sci. USA 2003, 100, 3689–3694.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. C. E. Webster, M. Y. Darensbourg, P. A. Lindahl, M. B. Hall, J. Am. Chem. Soc. 2004, 126, 3410–3411.

    CAS  PubMed  Google Scholar 

  128. P. T. Matsunaga, G. L. Hillhouse, Angew. Chem. Int. Edit. 1994, 33, 1748–1749.

    Google Scholar 

  129. G. C. Tucci, R. H. Holm, J. Am. Chem. Soc. 1995, 117, 6489–6496.

    CAS  Google Scholar 

  130. D. Sellmann, D. Haussinger, F. Knoch, M. Moll, J. Am. Chem. Soc. 1996, 118, 5368–5374.

    CAS  Google Scholar 

  131. X. S. Tan, C. Sewell, Q. W. Yang, P. A. Lindahl, J. Am. Chem. Soc. 2003, 125, 318–319.

    CAS  PubMed  Google Scholar 

  132. J. Q. Xia, Z. G. Hu, C. V. Popescu, P. A. Lindahl, E. Munck, J. Am. Chem. Soc. 1997, 119, 8301–8312.

    CAS  Google Scholar 

  133. M. R. Bramlett, A. Stubna, X. S. Tan, I. V. Surovtsev, E. Munck, P. A. Lindahl, Biochemistry 2006, 45, 8674–8685.

    CAS  PubMed  Google Scholar 

  134. T. C. Harrop, P. K. Mascharak, Coord. Chem. Rev. 2005, 249, 3007–3024.

    CAS  Google Scholar 

  135. W. W. Gu, S. Gencic, S. P. Cramer, D. A. Grahame, J. Am. Chem. Soc. 2003, 125, 15343–15351.

    CAS  PubMed  Google Scholar 

  136. T. Funk, W. W. Gu, S. Friedrich, H. X. Wang, S. Gencic, D. A. Grahame, S. P. Cramer, J. Am. Chem. Soc. 2004, 126, 88–95.

    CAS  PubMed  Google Scholar 

  137. J. Seravalli, M. Kumar, S. W. Ragsdale, Biochemistry 2002, 41, 1807–1819.

    CAS  PubMed  Google Scholar 

  138. S. W. Ragsdale, H. G. Wood, W. E. Antholine, Proc. Natl. Acad. Sci. USA 1985, 82, 6811–6814.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. S. W. Ragsdale, L. G. Ljungdahl, D. V. Dervartanian, Biochem. Biophys. Res. Commun. 1982, 108, 658–663.

    CAS  PubMed  Google Scholar 

  140. R. P. Schenker, T. C. Brunold, J. Am. Chem. Soc. 2003, 125, 13962–13963.

    CAS  PubMed  Google Scholar 

  141. S. J. George, J. Seravalli, S. W. Ragsdale, J. Am. Chem. Soc. 2005, 127, 13500–13501.

    CAS  PubMed  Google Scholar 

  142. G. Bender, T. A. Stich, L. F. Yan, R. D. Britt, S. P. Cramer, S. W. Ragsdale, Biochemistry 2010, 49, 7516–7523.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. S. Gencic, K. Kelly, S. Ghebreamlak, E. C. Duin, D. A. Grahame, Biochemistry 2013, 52, 1705–1716.

    CAS  PubMed  Google Scholar 

  144. A. Chmielowska, P. Lodowski, M. Jaworska, J.Phys. Chem. A 2013, 117, 12484–12496.

    Google Scholar 

  145. P. Amara, A. Volbeda, J. C. Fontecilla-Camps, M. J. Field, J. Am. Chem. Soc. 2005, 127, 2776–2784.

    CAS  PubMed  Google Scholar 

  146. S. A. Ensign, Biochemistry 1995, 34, 5372–5381.

    CAS  PubMed  Google Scholar 

  147. D. S. Newsome, Catalysis Reviews - Science and Engineering 1980, 21, 275–318.

    CAS  Google Scholar 

  148. R. Hille, Chem. Rev. 1996, 96, 2757–2816.

    CAS  PubMed  Google Scholar 

  149. M. W. Ribbe, Y. Hu, K. O. Hodgson, B. Hedman, Chem. Rev. 2013.

    Google Scholar 

  150. Y. Hu, M. W. Ribbe, J. Biol. Chem. 2013, 288, 13173–13177.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Y. Hu, M. W. Ribbe, Biochim. Biophys. Acta 2013, 1827, 1112–1122.

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Y. Hu, M. W. Ribbe, Methods Mol. Biol. 2011, 766, 3–7.

    CAS  PubMed  Google Scholar 

  153. J. W. Peters, J. B. Broderick, Annu. Rev. Biochem. 2012, 81, 429–450.

    CAS  PubMed  Google Scholar 

  154. Y. Nicolet, J. C. Fontecilla-Camps, J. Biol. Chem. 2012, 287, 13532–13540.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. A. Böck, P. W. King, M. Blokesch, M. C. Posewitz, Adv. Microb. Physiol. 2006, 51, 1–71.

    PubMed  Google Scholar 

  156. M. A. Farrugia, L. Macomber, R. P. Hausinger, J. Biol. Chem. 2013, 288, 13178–13185.

    CAS  PubMed Central  PubMed  Google Scholar 

  157. C. C. Lee, Y. L. Hu, M. W. Ribbe, Science 2010, 329, 642–642.

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Y. L. Hu, C. C. Lee, M. W. Ribbe, Science 2011, 333, 753–755.

    CAS  PubMed Central  PubMed  Google Scholar 

  159. B. K. Ho, F. Gruswitz, BMC Struct. Biol. 2008, 8, 49.

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

Research in our laboratory has been supported by the German funding agency DFG through individual project grants (DO-785/1, DO-785/5, DO-785/6) and the Cluster of Excellence “Unifying Concepts in Catalysis - UniCat” (EXC 314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Dobbek .

Editor information

Editors and Affiliations

Abbreviations

Abbreviations

ACS:

acetyl-CoA synthase

ACDS:

acetyl-CoA decarbonylase/synthase

CoA:

coenzyme A

CODH:

carbon monoxide dehydrogenase

CoFeSP:

corrinoid iron-sulfur protein

Ch :

Carboxydothermus hydrogenoformans

Cu,Mo-CODH:

Cu- and Mo-containing carbon monoxide dehydrogenase

ENDOR:

electron nuclear double resonance

EPR:

electron paramagnetic resonance

FAD:

flavin adenine dinucleotide

H4F:

tetrahydrofolate

HOMO:

highest occupied molecular orbital

LUCA:

last universal common ancestor

MCD:

molybdopterin cytosine dinucleotide

MeTr:

methyltransferase

Mt :

Moorella thermoacetica

Ni,Fe-CODH:

Ni- and Fe-containing carbon monoxide dehydrogenase

nBIC:

n-butyl isocyanide

PDB:

Protein Data Bank

Rr :

Rhodospirillum rubrum

SOMO:

singly occupied molecular orbital

Tg:

teragram

XO:

xanthine oxidase

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jeoung, JH., Fesseler, J., Goetzl, S., Dobbek, H. (2014). Carbon Monoxide. Toxic Gas and Fuel for Anaerobes and Aerobes: Carbon Monoxide Dehydrogenases. In: Kroneck, P., Torres, M. (eds) The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment. Metal Ions in Life Sciences, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9269-1_3

Download citation

Publish with us

Policies and ethics