Skip to main content

(How to) Profit from Molecular Dynamics-based Ensemble Docking

  • Chapter
  • First Online:
Application of Computational Techniques in Pharmacy and Medicine

Abstract

Computational techniques have provided the field of drug discovery with enormous advances over the last decades. The development of methods covering dynamical aspects in protein–ligand binding is currently leading computer-aided drug design to new levels of complexity as well as accuracy. In this book chapter we focus on molecular docking to structural ensembles generated by molecular dynamics (MD) simulations. Does the incorporation of multiple receptor conformations allow pushing the borders for molecular docking or does it just lead to an artificial increase in false positive hit rates due to a broader conformational space of the receptor? We aim to identify guidelines for the best practice of molecular dynamics simulation-based ensemble docking from recent studies in the literature. Hence, we split the computational workflow for MD-based ensemble docking into the respective steps starting from protein structure and compound database to in silico hit lists. Thereby, we focus on the identification of successful strategies for virtual screening.

Susanne von Grafenstein and Julian E. Fuchs authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boehr DD, McElheny D, Dyson HJ, Wright PE (2006) The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313(5793):1638–1642. doi:10.1126/science.1130258

    CAS  Google Scholar 

  2. Fischer E (1894) Einfluss der Configuration auf die Wirkung der Enzyme. Ber Dtsch Chem Ges 27

    Google Scholar 

  3. Koshland DE (1958) Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci U S A 44 98–104

    CAS  Google Scholar 

  4. Tsai CJ, Ma BY, Nussinov R (1999) Folding and binding cascades: shifts in energy landscapes. Proc Natl Acad Sci U S A 96(18):9970–9972. doi:10.1073/pnas.96.18.9970

    CAS  Google Scholar 

  5. Tsai CJ, Kumar S, Ma BY, Nussinov R (1999) Folding funnels, binding funnels, and protein function. Protein Sci 8(6):1181–1190

    CAS  Google Scholar 

  6. Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5(11):789–796. doi:10.1038/nchembio.232

    CAS  Google Scholar 

  7. Durrant JD, McCammon JA (2010) Computer-aided drug-discovery techniques that account for receptor flexibility. Curr Opin Pharmacol 10(6):770–774. doi:10.1016/j.coph.2010.09.001

    CAS  Google Scholar 

  8. Totrov M, Abagyan R (2008) Flexible ligand docking to multiple receptor conformations: a practical alternative. Curr Opin Struct Biol 18(2):178–184. doi:10.1016/j.sbi.2008.01.004

    CAS  Google Scholar 

  9. Carlson HA, McCammon JA (2000) Accommodating protein flexibility in computational drug design. Mol Pharmacol 57(2):213–218

    CAS  Google Scholar 

  10. Carlson HA (2002) Protein flexibility is an important component of structure-based drug discovery. Curr Pharm Des 8(17):1571–1578. doi:10.2174/1381612023394232

    CAS  Google Scholar 

  11. Chaudhury S, Gray JJ (2008) Conformer selection and induced fit in flexible backbone protein-protein docking using computational and NMR ensembles. J Mol Biol 381(4):1068–1087. doi:10.1016/j.jmb.2008.05.042

    CAS  Google Scholar 

  12. Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M, Kern D (2007) A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450(7171):913–U27. doi:10.1038/nature06407

    CAS  Google Scholar 

  13. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Str, Funct, Bioinform 78(8):1950–1958. doi:10.1002/prot.22711

    CAS  Google Scholar 

  14. Klepeis JL, Lindorff-Larsen K, Dror RO, Shaw DE (2009) Long-timescale molecular dynamics simulations of protein structure and function. Curr Opin Struct Biol 19(2):120–127. doi:10.1016/j.sbi.2009.03.004

    CAS  Google Scholar 

  15. Goetz AW, Williamson MJ, Xu D, Poole D, Le Grand S, Walker RC (2012) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. generalized born. J Chem Theory Comput 8(5):1542–1555. doi:10.1021/ct200909j

    Google Scholar 

  16. Luque I, Freire E (2000) Structural stability of binding sites: Consequences for binding affinity and allosteric effects. Proteins: Str Funct Genet 41(S4):63–71. doi:10.1002/1097-0134 (2000) 41:4+<63::AID-PROT60>3.0.CO;2-6

    Google Scholar 

  17. Kroemer RT (2007) Structure-based drug design: docking and scoring. Curr Protein Pept Sci 8(4):312–328

    CAS  Google Scholar 

  18. B-Rao C, Subramanian J, Sharma SD (2009) Managing protein flexibility in docking and its applications. Drug Discov Today 14(7–8):394–400. doi:10.1016/j.drudis.2009.01.003

    CAS  Google Scholar 

  19. Jiang F, Kim SH (1991) Soft docking-matching of molecular—surface cubes. J Mol Biol 219(1):79–102. doi:10.1016/0022-2836(91)90859-5

    CAS  Google Scholar 

  20. Claussen H, Buning C, Rarey M, Lengauer T (2001) FlexE: efficient molecular docking considering protein structure variations. J Mol Biol 308(2):377–395. doi:10.1006/jmbi.2001.4551

    CAS  Google Scholar 

  21. Flick J, Tristram F, Wenzel W (2012) Modeling loop backbone flexibility in receptor-ligand docking simulations. J Comput Chem 33(31):2504–2515. doi:10.1002/jcc.23087

    CAS  Google Scholar 

  22. Cozzini P, Kellogg GE, Spyrakis F, Abraham DJ, Costantino G, Emerson A, Fanelli F, Gohlke H, Kuhn LA, Morris GM, Orozco M, Pertinhez TA, Rizzi M, Sotriffer CA (2008) Target flexibility: an emerging consideration in drug discovery and design. J Med Chem 51(20):6237–6255. doi:10.1021/jm800562d

    CAS  Google Scholar 

  23. Gamblin SJ, Skehel JJ (2010) influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem 285(37):28403–28409. doi:10.1074/jbc.R110.129809

    CAS  Google Scholar 

  24. Lill MA (2011) Efficient incorporation of protein flexibility and dynamics into molecular docking simulations. Biochemistry 50(28):6157–6169. doi:10.1021/bi2004558

    CAS  Google Scholar 

  25. Russell RJ, Haire LF, Stevens DJ, Collins PJ, Lin YP, Blackburn GM, Hay AJ, Gamblin SJ, Skehel JJ (2006) The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443(7107):45–49. doi:10.1038/nature05114

    CAS  Google Scholar 

  26. Cheng LS, Amaro RE, Xu D, Li WW, Arzberger PW, McCammon JA (2008) Ensemble-based virtual screening reveals potential novel antiviral compounds for avian influenza neuraminidase. J Med Chem 51(13):3878–3894. doi:10.1021/jm8001197

    CAS  Google Scholar 

  27. Grienke U, Schmidtke M, Kirchmair J, Pfarr K, Wutzler P, Durrwald R, Wolber G, Liedl KR, Stuppner H, Rollinger JM (2010) Antiviral Potential and Molecular Insight into Neuraminidase Inhibiting Diarylheptanoids from Alpinia katsumadai. J Med Chem 53(2):778–786. doi:10.1021/jm901440f

    CAS  Google Scholar 

  28. Vavricka CJ, Li Q, Wu Y, Qi JX, Wang MY, Liu Y, Gao F, Liu J, Feng EG, He JH, Wang JF, Liu H, Jiang HL, Gao GF (2011) Structural and functional analysis of laninamivir and its octanoate prodrug reveals group specific mechanisms for influenza NA inhibition. PloS Pathog 7(10):e1002249. doi:10.1371/journal.ppat.1002249

    CAS  Google Scholar 

  29. Li Q, Qi JX, Zhang W, Vavricka CJ, Shi Y, Wei JH, Feng EG, Shen JS, Chen JL, Liu D, He JH, Yan JH, Liu H, Jiang HL, Teng MK, Li XB, Gao GF (2010) The 2009 pandemic H1N1 neuraminidase N1 lacks the 150-cavity in its active site. Nat Struct Mol Biol 17(10):1266–1268. doi:10.1038/nsmb.1909

    CAS  Google Scholar 

  30. van der Vries E, Collins PJ, Vachieri SG, Xiong XL, Liu JF, Walker PA, Haire LF, Hay AJ, Schutten M, Osterhaus A, Martin SR, Boucher CAB, Skehel JJ, Gamblin SJ (2012) H1N1 2009 Pandemic influenza virus: Resistance of the I223R neuraminidase mutant explained by kinetic and structural analysis. PloS Pathog 8(9):e1002914. doi:10.1371/journal.ppat.1002914

    Google Scholar 

  31. Rudrawar S, Dyason JC, Rameix-Welti MA, Rose FJ, Kerry PS, Russell RJ, van der Werf S, Thomson RJ, Naffakh N, von Itzstein M (2010) Novel sialic acid derivatives lock open the 150-loop of an influenza A virus group-1 sialidase. Nat Comm 1 113. doi:10.1038/ncomms1114

    Google Scholar 

  32. Amaro RE, Swift RV, Votapka L, Li WW, Walker RC, Bush RM (2011) Mechanism of 150-cavity formation in influenza neuraminidase. Nat Comm 2388. doi:10.1038/ncomms1390

    Google Scholar 

  33. Wallnoefer HG, Lingott T, Gutierrez JM, Merfort I, Liedl KR (2010) Backbone flexibility controls the activity and specificity of a protein-protein interface: specificity in snake venom metalloproteases. J Am Chem Soc 132(30):10330–10337. doi:10.1021/ja909908y

    CAS  Google Scholar 

  34. Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Goetz AW, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wolf RM, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2012) AMBER12. University of California, San Francisco

    Google Scholar 

  35. Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095. doi:10.1021/ct400341p

    CAS  Google Scholar 

  36. von Grafenstein S, Wallnoefer HG, Kirchmair J, Fuchs JE, Huber RG, Spitzer GM, Schmidtke M, Sauerbrei A, Rollinger JM, Liedl KR (2013) Interface dynamics explain assembly dependency of influenza neuraminidase catalytic activity. J Biomol Struct Dyn. Published online doi:10.1080/07391102.2013.855142

    Google Scholar 

  37. McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267(5612):585–590. doi:10.1038/267585a0

    CAS  Google Scholar 

  38. Xu M, Lill MA (2011) Significant enhancement of docking sensitivity using implicit ligand sampling. J Chem Inf Model 51(3):693–706. doi:10.1021/ci100457t

    CAS  Google Scholar 

  39. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174

    CAS  Google Scholar 

  40. Fuchs JE, Huber RG, Von Grafenstein S, Wallnoefer HG, Spitzer GM, Fuchs D, Liedl KR (2012) Dynamic regulation of phenylalanine hydroxylase by simulated redox manipulation. PloS One 7(12):e53005. doi:10.1371/journal.pone.0053005

    CAS  Google Scholar 

  41. Lin J-H, Perryman AL, Schames JR, McCammon JA (2002) Computational drug design accommodating receptor flexibility: the relaxed complex scheme. J Am Chem Soc 124(20):5632–5633. doi:10.1021/ja0260162

    CAS  Google Scholar 

  42. Seeliger D, de Groot BL (2010) Conformational transitions upon ligand binding: holo-structure prediction from apo conformations. PloS Comp Biol 6(1):e1000634. doi:10.1371/journal.pcbi.1000634

    Google Scholar 

  43. Nichols SE, Baron R, Ivetac A, McCammon JA (2011) Predictive power of molecular dynamics receptor structures in virtual screening. J Chem Inf Model 51(6):1439–1446. doi:10.1021/ci200117n

    CAS  Google Scholar 

  44. McGovern SL, Shoichet BK (2003) Information decay in molecular docking screens against holo, apo, and modeled conformations of enzymes. J Med Chem 46(14):2895–2907. doi:10.1021/jm0300330

    CAS  Google Scholar 

  45. Mackey MD, Melville JL (2009) Better than random? The chemotype enrichment problem. J Chem Inf Model 49(5):1154–1162. doi:10.1021/ci8003978

    CAS  Google Scholar 

  46. Bolstad ESD, Anderson AC (2009) In pursuit of virtual lead optimization: pruning ensembles of receptor structures for increased efficiency and accuracy during docking. Proteins: Str, Funct, Bioinform 75(1):62–74. doi:10.1002/prot.22214

    CAS  Google Scholar 

  47. Armen RS, Chen J, Brooks CL III (2009) An evaluation of explicit receptor flexibility in molecular docking using molecular dynamics and torsion angle molecular dynamics. J Chem Theory Comput 5(10):2909–2923. doi:10.1021/ct900262t

    CAS  Google Scholar 

  48. Marelius J, Ljungberg KB, Aqvist J (2001) Sensitivity of an empirical affinity scoring function to changes in receptor-ligand complex conformations. Eur J Pharm Sci 14(1):87–95. doi:10.1016/s0928-0987(01)00162-2

    CAS  Google Scholar 

  49. Kirchmair J, Spitzer GM, Liedl KR (2011) Consideration of water and solvation effects in virtual screening. In: Sotriffer C (ed) Virtual screening: principals, challenges, and practical guidelines, vol 82. Wiley, Weinheim, pp 263–289

    Google Scholar 

  50. Cole JC, Korb O, Olsson TSG, Liebeschuetz J (2011) The basis for target-based virtual screening: protein structures. In: Sotriffer C (ed) Virtual screening: principals, challenges, and practical guidelines, vol 82. Wiley, Weinheim, pp 87–114

    Google Scholar 

  51. Borjesson U, Hunenberger PH (2001) Explicit-solvent molecular dynamics simulation at constant pH: methodology and application to small amines. J Chem Phys 114(22):9706–9719

    CAS  Google Scholar 

  52. Merski M, Shoichet BK (2013) The impact of introducing a histidine into an apolar cavity site on docking and ligand recognition. J Med Chem 56(7):2874–2884. doi:10.1021/jm301823g

    CAS  Google Scholar 

  53. Kim MO, Nichols SE, Wang Y, McCammon JA (2013) Effects of histidine protonation and rotameric states on virtual screening of M-tuberculosis RmlC. J Comput-Aided Mol Des 27(3):235–246. doi:10.1007/s10822-013-9643-9

    Google Scholar 

  54. Labute P (2009) Protonate3D: assignment of ionization states and hydrogen coordinates to macromolecular structures. Proteins: Str, Funct, Bioinform 75(1):187–205. doi:10.1002/prot.22234

    CAS  Google Scholar 

  55. Halperin I, Ma BY, Wolfson H, Nussinov R (2002) Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins: Str, Funct, Genet 47(4):409–443. doi:10.1002/prot.10115

    CAS  Google Scholar 

  56. Sinko W, Lindert S, McCammon JA (2013) Accounting for receptor flexibility and enhanced sampling methods in computer-aided drug design. Chem Biol Drug Des 81(1):41–49. doi:10.1111/cbdd.12051

    CAS  Google Scholar 

  57. Osguthorpe DJ, Sherman W, Hagler AT (2012) Exploring protein flexibility: incorporating structural ensembles from crystal structures and simulation into virtual screening protocols. J Phys Chem B 116(23):6952–6959. doi:10.1021/jp3003992

    CAS  Google Scholar 

  58. Fulle S, Gohlke H (2010) Molecular recognition of RNA: challenges for modelling interactions and plasticity. J Mol Recognit 23(2):220–231. doi:10.1002/jmr.1000

    CAS  Google Scholar 

  59. Bruno A, Amori L, Costantino G (2011) Addressing the conformational flexibility of serine racemase by combining targeted molecular dynamics, conformational sampling and docking studies. Mol Inform 30(4):317–328. doi:10.1002/minf.201000162

    CAS  Google Scholar 

  60. Abagyan R, Totrov M, Kuznetsov D (1994) ICM—a new method for protein modeling and design—applications to docking and structure prediction from the distorted native conformation. J Comput Chem 15(5):488–506. doi:10.1002/jcc.540150503

    CAS  Google Scholar 

  61. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314(1–2):141–151. doi:10.1016/s0009-2614(99)01123-9

    CAS  Google Scholar 

  62. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092. doi:10.1063/1.1699114

    CAS  Google Scholar 

  63. Gervasio FL, Laio A, Parrinello M (2005) Flexible docking in solution using metadynamics. J Am Chem Soc 127(8):2600–2607. doi:10.1021/ja0445950

    CAS  Google Scholar 

  64. Zacharias M (2004) Rapid protein-ligand docking using soft modes from molecular dynamics simulations to account for protein deformability: binding of FK506 to FKBP. Proteins: Str, Funct, Bioinform 54(4):759–767. doi:10.1002/prot.10637

    CAS  Google Scholar 

  65. Hinsen K (1998) Analysis of domain motions by approximate normal mode calculations. Proteins: Str, Funct, Genet 33(3):417–429. doi:10.1002/(sici)1097-0134(19981115)33:3<417::aid-prot10>3.0.co;2-8

    CAS  Google Scholar 

  66. May A, Zacharias M (2008) Protein-ligand docking accounting for receptor side chain and global flexibility in normal modes: evaluation on kinase inhibitor cross docking. J Med Chem 51(12):3499–3506. doi:10.1021/jm800071v

    CAS  Google Scholar 

  67. Leis S, Zacharias M (2011) Efficient inclusion of receptor flexibility in grid-based protein-ligand docking. J Comput Chem 32(16):3433–3439. doi:10.1002/jcc.21923

    CAS  Google Scholar 

  68. Cavasotto CN, Kovacs JA, Abagyan RA (2005) Representing receptor flexibility in ligand docking through relevant normal modes. J Am Chem Soc 127(26):9632–9640. doi:10.1021/ja042260c

    CAS  Google Scholar 

  69. Rueda M, Bottegoni G, Abagyan R (2009) Consistent improvement of cross-docking results using binding site ensembles generated with elastic network normal modes. J Chem Inf Model 49(3):716–725. doi:10.1021/ci8003732

    CAS  Google Scholar 

  70. Tran HT, Zhang S (2011) Accurate prediction of the bound form of the akt pleckstrin homology domain using normal mode analysis to explore structural flexibility. J Chem Inf Model 51(9):2352–2360. doi:10.1021/ci2001742

    CAS  Google Scholar 

  71. Cavasotto CN, Abagyan RA (2004) Protein flexibility in ligand docking and virtual screening to protein kinases. J Mol Biol 337(1):209–225. doi:10.1016/j.jmb.2004.01.003

    CAS  Google Scholar 

  72. Davis IW, Baker D (2009) ROSETTALIGAND docking with full ligand and receptor flexibility. J Mol Biol 385(2):381–392. doi:10.1016/j.jmb.2008.11.010

    CAS  Google Scholar 

  73. Meiler J, Baker D (2006) ROSETTALIGAND: protein-small molecule docking with full side-chain flexibility. Proteins: Str, Funct, Bioinform 65(3):538–548. doi:10.1002/prot.21086

    CAS  Google Scholar 

  74. Alonso H, Bliznyuk AA, Gready JE (2006) Combining docking and molecular dynamic simulations in drug design. Med Res Rev 26(5):531–568. doi:10.1002/med.20067

    CAS  Google Scholar 

  75. Knegtel RMA, Kuntz ID, Oshiro CM (1997) Molecular docking to ensembles of protein structures. J Mol Biol 266(2):424–440. doi:10.1006/jmbi.1996.0776

    CAS  Google Scholar 

  76. Polgar T, Keseru GM (2006) Ensemble docking into flexible active sites. Critical evaluation of flexE against JNK-3 and beta-secretase. J Chem Inf Model 46(4):1795–1805. doi:10.1021/ci050412x

    CAS  Google Scholar 

  77. Osterberg F, Morris GM, Sanner MF, Olson AJ, Goodsell DS (2002) Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins: Str, Funct, Genet 46(1):34–40. doi:10.1002/prot.10028

    CAS  Google Scholar 

  78. Broughton HB (2000) A method for including protein flexibility in protein-ligand docking: improving tools for database mining and virtual screening. J Mol Graphics Modell 18(3):247–+. doi:10.1016/s1093-3263(00)00036-x

    CAS  Google Scholar 

  79. Cosconati S, Marinelli L, Di Leva FS, La Pietra V, De Simone A, Mancini F, Andrisano V, Novellino E, Goodsell DS, Olson AJ (2012) Protein flexibility in virtual screening: the BACE-1 case study. J Chem Inf Model 52(10):2697–2704. doi:10.1021/ci300390h

    CAS  Google Scholar 

  80. Lin JH, Perryman AL, Schames JR, McCammon JA (2003) The relaxed complex method: accommodating receptor flexibility for drug design with an improved scoring scheme. Biopolymers 68(1):47–62. doi:10.1002/bip.10218

    CAS  Google Scholar 

  81. Schames JR, Henchman RH, Siegel JS, Sotriffer CA, Ni HH, McCammon JA (2004) Discovery of a novel binding trench in HIV integrase. J Med Chem 47(8):1879–1881. doi:10.1021/jm0341913

    CAS  Google Scholar 

  82. Perryman AL, Lin J-H, McCammon JA (2006) Optimization and computational evaluation of a series of potential active site inhibitors of the V82F/I84V drug-resistant mutant of HIV-1 protease: an application of the relaxed complex method of structure-based drug design. Chem Biol Drug Des 67(5):336–345. doi:10.1111/j.1747-0285.2006.00382.x

    CAS  Google Scholar 

  83. Trott O, Olson AJ (2010) Software news and update autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. doi:10.1002/jcc.21334

    CAS  Google Scholar 

  84. Amaro RE, Baron R, McCammon JA (2008) An improved relaxed complex scheme for receptor flexibility in computer-aided drug design. J Comput-Aided Mol Des 22(9):693–705. doi:10.1007/s10822-007-9159-2

    CAS  Google Scholar 

  85. Sivanesan D, Rajnarayanan RV, Doherty J, Pattabiraman N (2005) In-silico screening using flexible ligand binding pockets: a molecular dynamics-based approach. J Comput-Aided Mol Des 19(4):213–228. doi:10.1007/s10822-005-4788-9

    CAS  Google Scholar 

  86. Paulsen JL, Anderson AC (2009) Scoring ensembles of docked protein: ligand interactions for virtual lead optimization. J Chem Inf Model 49(12):2813–2819. doi:10.1021/ci9003078

    CAS  Google Scholar 

  87. Korb O, Olsson TSG, Bowden SJ, Hall RJ, Verdonk ML, Liebeschuetz JW, Cole JC (2012) Potential and limitations of ensemble docking. J Chem Inf Model 52(5):1262–1274. doi:10.1021/ci2005934

    CAS  Google Scholar 

  88. Nichols SE, Swift RV, Amaro RE (2012) Rational prediction with molecular dynamics for hit identification. Curr Top Med Chem 12(18):2002–2012

    CAS  Google Scholar 

  89. Shao JY, Tanner SW, Thompson N, Cheatham TE (2007) Clustering molecular dynamics trajectories: 1. characterizing the performance of different clustering algorithms. J Chem Theory Comput 3(6):2312–2334. doi:10.1021/ct700119m

    CAS  Google Scholar 

  90. Daura X, van Gunsteren WF, Mark AE (1999) Folding-unfolding thermodynamics of a beta-heptapeptide from equilibrium simulations. Proteins: Str, Funct, Genet 34 (3):269–280. doi:10.1002/(sici)1097-0134(19990215)34:3<269::aid-prot1>3.0.co;2-3

    CAS  Google Scholar 

  91. Durrant JD, Hall L, Swift RV, Landon M, Schnaufer A, Amaro RE (2010) Novel naphthalene-based inhibitors of trypanosoma brucei RNA editing ligase 1. PloS Neglect Trop D 4(8):e803 doi:10.1371/journal.pntd.0000803

    Google Scholar 

  92. Damm-Ganamet KL, Smith RD, Dunbar JB, Stuckey JA, Carlson HA (2013) CSAR benchmark exercise 2011–2012: evaluation of results from docking and relative ranking of blinded congeneric series. J Chem Inf Model. doi:10.1021/ci400025f

    Google Scholar 

  93. Ben Nasr N, Guillemain H, Lagarde N, Zagury J-F, Montes M (2013) Multiple structures for virtual ligand screening: defining binding site properties-based criteria to optimize the selection of the query. J Chem Inf Model 53(2):293–311. doi:10.1021/ci3004557

    CAS  Google Scholar 

  94. Sotriffer CA, Dramburg I (2005) “In situ cross-docking” to simultaneously address multiple targets. J Med Chem 48(9):3122–3125. doi:10.1021/jm050075j

    CAS  Google Scholar 

  95. Huang S-Y, Zou X (2007) Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking. Proteins: Str, Funct, Bioinform 66(2):399–421. doi:10.1002/prot.21214

    CAS  Google Scholar 

  96. Bottegoni G, Kufareva I, Totrov M, Abagyan R (2009) Four-dimensional docking: a fast and accurate account of discrete receptor flexibility in ligand docking. J Med Chem 52(2):397–406. doi:10.1021/jm8009958

    CAS  Google Scholar 

  97. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161(2):269–288. doi:10.1016/0022-2836(82)90153-x

    CAS  Google Scholar 

  98. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Rev Drug Discov 3(11):935–949. doi:10.1038/nrd1549

    CAS  Google Scholar 

  99. Jorgensen WL (2004) The many roles of computation in drug discovery. Science 303(5665):1813–1818. doi:10.1126/science.1096361

    CAS  Google Scholar 

  100. Rognan D (2011) Docking methods for virtual screening: principles and recent advances. In: Sotriffer C (ed) Virtual screening: principals, challenges, and practical guidelines, vol 82. Wiley, Weinheim, pp 153–176

    Google Scholar 

  101. Henzler AM, Rarey M (2011) Protein flexibility in structure-based virtual screening: from models to algorithms. In: Sotriffer C (ed) Virtual screening: principals, challenges, and practical guidelines, vol 82. Wiley, Weinheim, pp 223–244

    Google Scholar 

  102. Carlson HA, Dunbar JB Jr (2011) A call to arms: what you can do for computational drug discovery. J Chem Inf Model 51(9):2025–2026. doi:10.1021/ci200398g

    CAS  Google Scholar 

  103. Warren GL, Andrews CW, Capelli A-M, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49(20):5912–5931. doi:10.1021/jm050362n

    CAS  Google Scholar 

  104. Perola E, Charifson PS (2004) Conformational analysis of drug-like molecules bound to proteins: an extensive study of ligand reorganization upon binding. J Med Chem 47(10):2499–2510. doi:10.1021/jm030563w

    CAS  Google Scholar 

  105. Gohlke H, Hendlich M, Klebe G (2000) Predicting binding modes, binding affinities and ‘hot spots’ for protein-ligand complexes using a knowledge-based scoring function. Perspec Drug Discov Des 20(1):115–144. doi:10.1023/a:1008781006867

    CAS  Google Scholar 

  106. Velec HFG, Gohlke H, Klebe G (2005) DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. J Med Chem 48(20):6296–6303. doi:10.1021/jm050436v

    CAS  Google Scholar 

  107. Kuhn B, Fuchs JE, Reutlinger M, Stahl M, Taylor NR (2011) Rationalizing tight ligand binding through cooperative interaction networks. J Chem Inf Model 51(12):3180–3198. doi:10.1021/ci200319e

    CAS  Google Scholar 

  108. Repasky MP, Murphy RB, Banks JL, Greenwood JR, Tubert-Brohman I, Bhat S, Friesner RA (2012) Docking performance of the glide program as evaluated on the Astex and DUD datasets: a complete set of glide SP results and selected results for a new scoring function integrating WaterMap and glide. J Comput-Aided Mol Des 26(6):787–799. doi:10.1007/s10822-012-9575-9

    CAS  Google Scholar 

  109. Abel R, Young T, Farid R, Berne BJ, Friesner RA (2008) Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. J Am Chem Soc 130(9):2817–2831. doi:10.1021/ja0771033

    CAS  Google Scholar 

  110. Cummings MD, Arnoult É, Buyck C, Tresadern G, Vos AM, Wegner JK (2011) Preparing and filtering compound databases for virtual and experimental screening. In: Sotriffer C (ed) Virtual screening: principals, challenges, and practical guidelines, vol 82. Wiley, Weinheim, pp 35–59

    Google Scholar 

  111. Mason JS, Bortolato A, Congreve M, Marshall FH (2012) New insights from structural biology into the druggability of G protein-coupled receptors. Trends Pharmacol Sci 33(5):249–260. doi:10.1016/j.tips.2012.02.005

    CAS  Google Scholar 

  112. Smith RD, Dunbar JB Jr, Ung PM-U, Esposito EX, Yang C-Y, Wang S, Carlson HA (2011) CSAR benchmark exercise of 2010: combined evaluation across all submitted scoring functions. J Chem Inf Model 51(9):2115–2131. doi:10.1021/ci200269q

    CAS  Google Scholar 

  113. Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997) Empirical scoring functions: 1. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput-Aided Mol Des 11(5):425–445. doi:10.1023/a:1007996124545

    CAS  Google Scholar 

  114. Bottegoni G, Rocchia W, Rueda M, Abagyan R, Cavalli A (2011) Systematic exploitation of multiple receptor conformations for virtual ligand screening. PloS One 6(5):e18845. doi:10.1371/journal.pone.0018845

    CAS  Google Scholar 

  115. Xu M, Lill MA (2012) Utilizing experimental data for reducing ensemble size in flexible-protein docking. J Chem Inf Model 52(1):187–198. doi:10.1021/ci200428t

    CAS  Google Scholar 

  116. Wei BQ, Weaver LH, Ferrari AM, Matthews BW, Shoichet BK (2004) Testing a flexible-receptor docking algorithm in a model binding site. J Mol Biol 337(5):1161–1182. doi:10.1016/j.jmb.2004.02.015

    CAS  Google Scholar 

  117. Eriksson AE, Baase WA, Zhang XJ, Heinz DW, Blaber M, Baldwin EP, Matthews BW (1992) Response of a protein-structure to cavity-creating mutations and its relation to the hydrophobic effect. Science 255(5041):178–183. doi:10.1126/science.1553543

    CAS  Google Scholar 

  118. Barril X, Morley SD (2005) Unveiling the full potential of flexible receptor docking using multiple crystallographic structures. J Med Chem 48(13):4432–4443. doi:10.1021/jm048972v

    CAS  Google Scholar 

  119. Minh DDL (2012) Implicit ligand theory: rigorous binding free energies and thermodynamic expectations from molecular docking. J Chem Phys 137(10). doi:10.1063/1.4751284

    Google Scholar 

  120. Feng JA, Marshall GR (2010) SKATE: a docking program that decouples systematic sampling from scoring. J Comput Chem 31(14):2540–2554. doi:10.1002/jcc.21545

    CAS  Google Scholar 

  121. Korb O, McCabe P, Cole J (2011) The ensemble performance index: an improved measure for assessing ensemble pose prediction performance. J Chem Inf Model 51(11):2915–2919. doi:10.1021/ci2002796

    CAS  Google Scholar 

  122. Nicholls A (2008) What do we know and when do we know it?. J Comput-Aided Mol Des 22(3–4):239–255. doi:10.1007/s10822-008-9170-2

    CAS  Google Scholar 

  123. Peterson W, Birdsall T, Fox W (1954) The theory of signal detectability. Trans IRE Prof Group Inform Theory 4(4):171–212

    Google Scholar 

  124. Okimoto N, Futatsugi N, Fuji H, Suenaga A, Morimoto G, Yanai R, Ohno Y, Narumi T, Taiji M (2009) High-performance drug discovery: computational screening by combining docking and molecular dynamics simulations. PloS Comp Biol 5(10):e1000528. doi:10.1371/journal.pcbi.1000528

    Google Scholar 

  125. Amaro R, Cheng L, McCammon JA, Li WW, Arzberber PW (2009) Ensemble-based virtual screening reveals novel antiviral compounds for avian influenza neuraminidase. US Patent WO2009128964 22 Jan 2009

    Google Scholar 

  126. Proctor EA, Yin S, Tropsha A, Dokholyan NV (2012) Discrete molecular dynamics distinguishes native like binding poses from decoys in difficult targets. Biophys J 102(1):144–151. doi:10.1016/j.bpj.2011.11.4008

    CAS  Google Scholar 

  127. Wallnoefer H, Fox T, Liedl K (2010) Challenges for computer simulations in drug design. In: Paneth P, Dybala-Defratyka A (eds) Kinetics and dynamics, challenges and advances in computational chemistry and physics. Springer Netherlands, Dordrecht, pp 431–463

    Google Scholar 

  128. Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268(5214):1144–1149. doi:10.1126/science.7761829

    CAS  Google Scholar 

  129. Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 112(16):6127–6129. doi:10.1021/ja00172a038

    CAS  Google Scholar 

  130. Negri M, Recanatini M, Hartmann RW (2011) Computational investigation of the binding mode of bis(hydroxylphenyl)arenes in 17 beta-HSD1: molecular dynamics simulations, MM-PBSA free energy calculations, and molecular electrostatic potential maps. J Comput-Aided Mol Des 25(9):795–811. doi:10.1007/s10822-011-9464-7

    CAS  Google Scholar 

  131. Aqvist J, Medina C, Samuelsson JE (1994) New method for predicting binding-affinity in computer-aided drug design. Protein Eng 7(3):385–391. doi:10.1093/protein/7.3.385

    CAS  Google Scholar 

  132. Stjernschantz E, Oostenbrink C (2010) Improved ligand-protein binding affinity predictions using multiple binding modes. Biophys J 98(11):2682–2691. doi:10.1016/j.bpj.2010.02.034

    CAS  Google Scholar 

Download references

Acknowledgments

Presented work was supported by funding of the Austrian Science Fund FWF: project “Targeting Influenza Neuraminidase” (P23051). Julian E. Fuchs is a recipient of a DOC-fellowship of the Austrian Academy of Sciences at the Institute of General, Inorganic and Theoretical Chemistry at University of Innsbruck.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus R. Liedl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

von Grafenstein, S., Fuchs, J., Liedl, K. (2014). (How to) Profit from Molecular Dynamics-based Ensemble Docking. In: Gorb, L., Kuz'min, V., Muratov, E. (eds) Application of Computational Techniques in Pharmacy and Medicine. Challenges and Advances in Computational Chemistry and Physics, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9257-8_15

Download citation

Publish with us

Policies and ethics