Skip to main content

Computational Toxicology in Drug Discovery: Opportunities and Limitations

  • Chapter
  • First Online:
Application of Computational Techniques in Pharmacy and Medicine

Abstract

Different methods of computational toxicology are used in drug discovery to reveal toxic and dangerous side effects of drug candidates on early stages of drug development. Information about chemoinformatic, toxicogenomic and system biological approaches, commercial and freely available software and resources with data about toxicity of chemicals used in computational toxicology are represented. General rules and key components of QSAR modeling in respect to opportunities and limitations of computational toxicology in drug discovery are considered. The questions of computer evaluation of drug interaction with antitargets, drug-metabolizing enzymes, drug-transporters and related with such interaction toxic and side effects are discussed in the chapter. Along with an overview of existing approaches we give examples of the practical application of computer programs GUSAR, PASS and PharmaExpert to assess the general toxicity and toxic properties of individual drug-like compounds and drug combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valerio LG Jr (2009) In silico toxicology for the pharmaceutical sciencesâ. Toxicol Appl Pharmacol 241:356–370. doi:10.1016/j.taap.2009.08.022

    Article  CAS  Google Scholar 

  2. Snyder RD (2009) An update on the genotoxicity and carcinogenicity of marketed pharmaceuticals with reference to in silico predictivity. Environ Mol Mutagen 50:435–450. doi:10.1002/em.20485

    Article  CAS  Google Scholar 

  3. Kavlock RJ, Ankley G, Blancato J et al (2008) Computational toxicology—a state of the science mini review. Toxicol Sci Off J Soc Toxicol 103:14–27. doi:10.1093/toxsci/kfm297

    Article  CAS  Google Scholar 

  4. (2007) Tools and technologies Chapter 4. Toxic. Test. 21st Century Vis. Strategy. National Academies Press, Washington, DC, pp 98–119

    Google Scholar 

  5. (2006) EU. Official. J. Eur. Union. L396

    Google Scholar 

  6. Lahl U, Gundert-Remy U (2008) The use of (Q)SAR methods in the context of REACH. Toxicol Mech Methods 18:149–158. doi:10.1080/15376510701857288

    Article  CAS  Google Scholar 

  7. Benfenati E, Diaza RG, Cassano A et al (2011) The acceptance of in silico models for REACH: requirements, barriers, and perspectives. Chem Cent J 5:58. doi:10.1186/1752-153X-5–58

    Article  CAS  Google Scholar 

  8. Ashby J (1985) Fundamental structural alerts to potential carcinogenicity or noncarcinogenicity. Environ Mutagen 7:919–921

    Article  CAS  Google Scholar 

  9. Ashby J, Tennant RW (1988) Chemical structure, Salmonella mutagenicity and extent of carcinogenicity as indicators of genotoxic carcinogenesis among 222 chemicals tested in rodents by the U.S. NCI/NTP. Mutat Res 204:17–115

    Article  CAS  Google Scholar 

  10. Ashby J, Tennant RW (1991) Definitive relationships among chemical structure, carcinogenicity and mutagenicity for 301 chemicals tested by the U.S. NTP. Mutat Res 257:229–306

    Article  CAS  Google Scholar 

  11. OECD principles. OECD Princ. http://www.oecd.org/env/ehs/risk-assessment/37849783.pdf. Accessed 7 May 2013

  12. Gedeck P, Rohde B, Bartels C (2006) QSAR—how good is it in practice? Comparison of descriptor sets on an unbiased cross section of corporate data sets. J Chem Inf Model 46:1924–1936. doi:10.1021/ci050413p

    Article  CAS  Google Scholar 

  13. Borth DM (1996) Optimal experimental designs for (possibly) censored data. Chemom Intell Lab Syst 32:25–35. doi:10.1016/0169-7439(95)00057-7

    Article  CAS  Google Scholar 

  14. Borth DM, Wilhelm MS (2002) Confidence limits for normal type I censored regression. Chemom Intell Lab Syst 63:117–128. doi:10.1016/S0169-7439(02)00019-9

    Article  CAS  Google Scholar 

  15. Matthews EJ, Kruhlak NL, Benz RD et al (2008) Combined use of MC4PC, MDL-QSAR, BioEpisteme, Leadscope PDM, and Derek for Windows Software to Achieve High-performance, high-confidence, mode of action-based predictions of chemical carcinogenesis in rodents. Toxicol Mech Methods 18:189–206. doi:10.1080/15376510701857379

    Article  CAS  Google Scholar 

  16. Gottmann E, Kramer S, Pfahringer B, Helma C (2001) Data quality in predictive toxicology: reproducibility of rodent carcinogenicity experiments. Environ Health Perspect 109:509–514

    Article  CAS  Google Scholar 

  17. Gold LS, Wright C, Bernstein L, deVeciana M (1987) Reproducibility of results in “near-replicate” carcinogenesis bioassays. J Natl Cancer Inst 78:1149–1158

    CAS  Google Scholar 

  18. Helma C, Kramer S, Pfahringer B, Gottmann E (2000) Data quality in predictive toxicology: identification of chemical structures and calculation of chemical properties. Environ Health Perspect 108:1029–1033

    Article  CAS  Google Scholar 

  19. (2007) Chapter 3: Guidance on grouping of chemicals. Approaches data gap fill. Chem. Categ. OECD, pp 30–41

    Google Scholar 

  20. Arvidson KB (2008) FDA toxicity databases and real-time data entry. Toxicol Appl Pharmacol 233:17–19. doi:10.1016/j.taap.2007.12.033

    Article  CAS  Google Scholar 

  21. Benz RD (2007) Toxicological and clinical computational analysis and the US FDA/CDER. Expert Opin Drug Metab Toxicol 3:109–124. doi:10.1517/17425255.3.1.109

    Article  CAS  Google Scholar 

  22. Richard AM, Yang C, Judson RS (2008) Toxicity data informatics: supporting a new paradigm for toxicity prediction. Toxicol Mech Methods 18:103–118. doi:10.1080/15376510701857452

    Article  CAS  Google Scholar 

  23. National Center for Toxicological Mold2. NCTR. http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/default.htm. Accessed 7 May 2013

  24. Dearden JC, Cronin MTD, Kaiser KLE (2009) How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR). SAR QSAR Environ Res 20:241–266. doi:10.1080/10629360902949567

    Article  CAS  Google Scholar 

  25. Dearden JC, Cronin MTD, Schultz TW, Lin DT (1995) QSAR study of the toxicity of nitrobenzenes to tetrahymena pyriformis. Quant Struct-Act Relatsh 14:427–432. doi:10.1002/qsar.19950140503

    Article  CAS  Google Scholar 

  26. Kortagere S, Krasowski MD, Ekins S (2009) The importance of discerning shape in molecular pharmacology. Trends Pharmacol Sci 30:138–147. doi:10.1016/j.tips.2008.12.001

    Article  CAS  Google Scholar 

  27. Potemkin V, Grishina M (2008) Principles for 3D/4D QSAR classification of drugs. Drug Discov Today 13:952–959. doi:10.1016/j.drudis.2008.07.006

    Article  CAS  Google Scholar 

  28. Peristera O, Spreafico M, Smiesko M et al (2009) Mixed-model QSAR at the human mineralocorticoid receptor: predicting binding mode and affinity of anabolic steroids. Toxicol Lett 189:219–224. doi:10.1016/j.toxlet.2009.05.025

    Article  CAS  Google Scholar 

  29. Rose JR (2008) Machine learning techniques in chemistry. In: Gasteiger J (ed) Handbook of chemoinformatics. Wiley-VCH Verlag GmbH, Weinheim, Germany, pp 1082–1097

    Google Scholar 

  30. Martin S (2010) Machine learning-based bioinformatics algorithms: application to chemicals. Handbook of chemoinformatics algorithms. Chapman and Hall/CRC, Boca Raton, Florida, USA, pp 383–398

    Google Scholar 

  31. Filimonov D, Poroikov V (2008) Probabilistic approach in activity prediction. In: Varnek A, Tropsha A (eds) Chemoinformatics approaches virtual screen. RSC Publishing, Cambridge, pp 182–216

    Chapter  Google Scholar 

  32. Hewitt M, Cronin MTD, Madden JC et al (2007) Consensus QSAR models: do the benefits outweigh the complexity? J Chem Inf Model 47:1460–1468. doi:10.1021/ci700016d

    Article  CAS  Google Scholar 

  33. Lagunin A, Filimonov D, Zakharov A et al (2009) Computer-aided prediction of rodent carcinogenicity by PASS and CISOC-PSCT. QSAR Comb Sci 28:806–810. doi:10.1002/qsar.200860192

    Article  CAS  Google Scholar 

  34. Geman S, Bienenstock E, Doursat R (1992) Neural networks and the bias/variance dilemma. Neural Comput 4:1–58. doi:10.1162/neco.1992.4.1.1

    Article  Google Scholar 

  35. Lagunin A, Zakharov A, Filimonov D, Poroikov V (2011) QSAR modelling of rat acute toxicity on the basis of PASS prediction. Mol Inform 30:241–250. doi:10.1002/minf.201000151

    Article  CAS  Google Scholar 

  36. ChemAxon Marvin Sketch. http://www.chemaxon.com/marvin/help/index.html. Accessed 8 May 2013

  37. Kennedy T (1997) Managing the drug discovery/development interface. Drug Discov Today 2:436–444. doi:10.1016/S1359-6446(97)01099-4

    Article  Google Scholar 

  38. Lasser KE, Allen PD, Woolhandler SJ et al (2002) Timing of new black box warnings and withdrawals for prescription medications. JAMA J Am Med Assoc 287:2215–2220

    Article  Google Scholar 

  39. Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3:711–715. doi:10.1038/nrd1470

    Article  CAS  Google Scholar 

  40. Fung M, Thornton A, Mybeck K et al (2001) Evaluation of the characteristics of safety withdrawal of prescription drugs from worldwide pharmaceutical markets-1960 to 1999*. Drug Inf J 35:293–317. doi:10.1177/009286150103500134

    Google Scholar 

  41. Stephens MDB (2004) Introduction. In: Talbot J, Waller P (eds) Stephens detect. New adverse drug react., 5th edn. Wiley, Chichester, pp 1–91

    Google Scholar 

  42. MRTD database. http://www.epa.gov/ncct/dsstox/sdf_fdamdd.html. Accessed 8 May 2013

  43. Mitchell JA, Warner TD (2005) Discontinuation of Vioxx. The Lancet 365:27–28. doi:10.1016/S0140-6736(04)17659-9

    Article  Google Scholar 

  44. Whitebread S, Hamon J, Bojanic D, Urban L (2005) Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development. Drug Discov Today 10:1421–1433. doi:10.1016/S1359-6446(05)03632-9

    Article  CAS  Google Scholar 

  45. Lagunin A, Filimonov D, Poroikov V (2010) Multi-targeted natural products evaluation based on biological activity prediction with PASS. Curr Pharm Des 16:1703–1717

    Article  CAS  Google Scholar 

  46. Breckenridge A (1996) A clinical pharmacologist’s view of drug toxicity. Br J Clin Pharmacol 42:53–58

    Article  CAS  Google Scholar 

  47. Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA J Am Med Assoc 279:1200–1205

    Article  CAS  Google Scholar 

  48. Ji ZL, Wang Y, Yu L et al (2006) In silico search of putative adverse drug reaction related proteins as a potential tool for facilitating drug adverse effect prediction. Toxicol Lett 164:104–112. doi:10.1016/j.toxlet.2005.11.017

    Article  CAS  Google Scholar 

  49. Chen YZ, Zhi DG (2001) Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins 43:217–226

    Article  CAS  Google Scholar 

  50. Ji ZL, Han LY, Yap CW et al (2003) Drug Adverse Reaction Target Database (DART): proteins related to adverse drug reactions. Drug Saf Int J Med Toxicol Drug Exp 26:685–690

    Article  CAS  Google Scholar 

  51. Poroikov V, Filimonov D, Lagunin A et al (2007) PASS: identification of probable targets and mechanisms of toxicity. SAR QSAR Environ Res 18:101–110. doi:10.1080/10629360601054032

    Article  CAS  Google Scholar 

  52. Filimonov DA, Zakharov AV, Lagunin AA, Poroikov VV (2009) QNA-based “Star Track” QSAR approach. SAR QSAR Environ Res 20:679–709. doi:10.1080/10629360903438370

    Article  CAS  Google Scholar 

  53. Sadym A, Lagunin A, Filimonov D, Poroikov V (2003) Prediction of biological activity spectra via the Internet. SAR QSAR Environ Res 14:339–347. doi:10.1080/10629360310001623935

    Article  CAS  Google Scholar 

  54. Lagunin AA, Zakharov AV, Filimonov DA, Poroikov VV (2007) A new approach to QSAR modelling of acute toxicity. SAR QSAR Environ Res 18:285–298. doi:10.1080/10629360701304253

    Article  CAS  Google Scholar 

  55. Kokurkina GV, Dutov MD, Shevelev SA et al (2011) Synthesis, antifungal activity and QSAR study of 2-arylhydroxynitroindoles. Eur J Med Chem 46:4374–4382. doi:10.1016/j.ejmech.2011.07.008

    Article  CAS  Google Scholar 

  56. Zakharov AV, Peach ML, Sitzmann M et al (2012) Computational tools and resources for metabolism-related property predictions. 2. Application to prediction of half-life time in human liver microsomes. Future Med Chem 4:1933–1944. doi:10.4155/fmc.12.152

    Article  CAS  Google Scholar 

  57. Zakharov AV, Lagunin AA, Filimonov DA, Poroikov VV (2012) Quantitative prediction of antitarget interaction profiles for chemical compounds. Chem Res Toxicol 25:2378–2385. doi:10.1021/tx300247r

    Article  CAS  Google Scholar 

  58. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996. doi:10.1038/nrd2199

    Article  CAS  Google Scholar 

  59. Lounkine E, Keiser MJ, Whitebread S et al (2012) Large-scale prediction and testing of drug activity on side-effect targets. Nature 486:361–367. doi:10.1038/nature11159

    CAS  Google Scholar 

  60. Ivanov SM, Lagunin AA, Zakharov AV et al (2013) Computer search for molecular mechanisms of ulcerogenic action of non-steroidal anti-inflammatory drugs. Biochem Mosc Suppl Ser B Biomed Chem 7:40–45. doi:10.1134/S199075081301006X

    Article  Google Scholar 

  61. Yang L, Wang K, Chen J et al (2011) Exploring off-targets and off-systems for adverse drug reactions via chemical-protein interactome-clozapine-induced agranulocytosis as a case study. PLoS Comput Biol 7:e1002016. doi:10.1371/journal.pcbi.1002016

    Article  CAS  Google Scholar 

  62. Bender A, Scheiber J, Glick M et al (2007) Analysis of pharmacology data and the prediction of adverse drug reactions and off-target effects from chemical structure. ChemMedChem 2:861–873. doi:10.1002/cmdc.200700026

    Article  CAS  Google Scholar 

  63. Scheiber J, Chen B, Milik M et al (2009) Gaining insight into off-target mediated effects of drug candidates with a comprehensive systems chemical biology analysis. J Chem Inf Model 49:308–317. doi:10.1021/ci800344p

    Article  CAS  Google Scholar 

  64. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550. doi:10.1073/pnas.0506580102

    Article  CAS  Google Scholar 

  65. Lamb J, Crawford ED, Peck D et al (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313:1929–1935. doi:10.1126/science.1132939

    Article  CAS  Google Scholar 

  66. Toyoshiba H, Sawada H, Naeshiro I, Horinouchi A (2009) Similar compounds searching system by using the gene expression microarray database. Toxicol Lett 186:52–57. doi:10.1016/j.toxlet.2008.08.009

    Article  CAS  Google Scholar 

  67. Minowa Y, Kondo C, Uehara T et al (2012) Toxicogenomic multigene biomarker for predicting the future onset of proximal tubular injury in rats. Toxicology 297:47–56. doi:10.1016/j.tox.2012.03.014

    Article  CAS  Google Scholar 

  68. Davis AP, Murphy CG, Johnson R et al (2013) The comparative toxicogenomics database: update 2013. Nucleic Acids Res 41:D1104–1114. doi:10.1093/nar/gks994

    Article  CAS  Google Scholar 

  69. Lagunin A, Ivanov S, Rudik A et al (2013) DIGEP-Pred: web-service for in silico prediction of drug-induced gene expression profiles based on structural formula. Bioinforma Oxf Engl. doi:10.1093/bioinformatics/btt322

    Google Scholar 

  70. Hardman JG, Limbird LE, Gilman AG (2001) Goodman & Gilman’s the pharmacological basis of therapeutics, 10th edn. The McGraw-Hill, NY, USA

    Google Scholar 

  71. Manga N, Duffy JC, Rowe PH, Cronin MTD (2005) Structure-based methods for the prediction of the dominant P450 enzyme in human drug biotransformation: consideration of CYP3A4, CYP2C9, CYP2D6. SAR QSAR Environ Res 16:43–61. doi:10.1080/10629360412331319871

    Article  CAS  Google Scholar 

  72. Jonker DM, Visser SAG, van der Graaf PH et al (2005) Towards a mechanism-based analysis of pharmacodynamic drug-drug interactions in vivo. Pharmacol Ther 106:1–18. doi:10.1016/j.pharmthera.2004.10.014

    Article  CAS  Google Scholar 

  73. Han H-K (2011) Role of transporters in drug interactions. Arch Pharm Res 34:1865–1877. doi:10.1007/s12272–011-1107-y

    Article  CAS  Google Scholar 

  74. Sedykh A, Fourches D, Duan J et al (2013) Human intestinal transporter database: QSAR modeling and virtual profiling of drug uptake, efflux and interactions. Pharm Res 30:996–1007. doi:10.1007/s11095-012-0935-x

    Article  CAS  Google Scholar 

  75. Manzi SF, Shannon M (2005) Drug interactions—a review. Clin Pediatr Emerg Med 6:93–102. doi:10.1016/j.cpem.2005.04.006

    Article  Google Scholar 

  76. Hou T, Wang J (2008) Structure-ADME relationship: still a long way to go? Expert Opin Drug Metab Toxicol 4:759–770. doi:10.1517/17425255.4.6.759

    Article  CAS  Google Scholar 

  77. Metcalfe PD, Thomas S (2010) Challenges in the prediction and modeling of oral absorption and bioavailability. Curr Opin Drug Discov Devel 13:104–110

    CAS  Google Scholar 

  78. Kirchmair J, Williamson MJ, Tyzack JD et al (2012) Computational prediction of metabolism: sites, products, SAR, P450 enzyme dynamics, and mechanisms. J Chem Inf Model 52:617–648. doi:10.1021/ci200542m

    Article  CAS  Google Scholar 

  79. Deeks E, Perry C (2010) Efavirenz/emtricitabine/tenofovir disoproxil fumarate single-tablet regimen (Atripla®): a review of its use in the management of HIV infection. Drugs 70:2315–2338

    Article  CAS  Google Scholar 

  80. Jacobs A (2005) Prediction of 2-year carcinogenicity study results for pharmaceutical products: how are we doing? Toxicol Sci Off J Soc Toxicol 88:18–23. doi:10.1093/toxsci/kfi248

    Article  CAS  Google Scholar 

  81. Fourches D, Muratov E, Tropsha A (2010) Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J Chem Inf Model 50:1189–1204. doi:10.1021/ci100176x

    Article  CAS  Google Scholar 

  82. SYMMETRY®. http://www.prousresearch.com/Technology/SYMMETRY.aspx. Accessed 7 May 2013

  83. Stranz DD, Miao S, Campbell S et al (2008) Combined computational metabolite prediction and automated structure-based analysis of mass spectrometric data. Toxicol Mech Methods 18:243–250. doi:10.1080/15376510701857189

    Article  CAS  Google Scholar 

  84. Pelander A, Tyrkkö E, Ojanperä I (2009) In silico methods for predicting metabolism and mass fragmentation applied to quetiapine in liquid chromatography/time-of-flight mass spectrometry urine drug screening. Rapid Commun Mass Spectrom 23:506–514. doi:10.1002/rcm.3901

    Article  CAS  Google Scholar 

  85. Dimitrov S, Dimitrova G, Pavlov T et al (2005) A stepwise approach for defining the applicability domain of SAR and QSAR models. J Chem Inf Model 45:839–849. doi:10.1021/ci0500381

    Article  CAS  Google Scholar 

  86. Weaver S, Gleeson MP (2008) The importance of the domain of applicability in QSAR modeling. J Mol Graph Model 26:1315–1326. doi:10.1016/j.jmgm.2008.01.002

    Article  CAS  Google Scholar 

  87. Snyder RD, Green JW (2001) A review of the genotoxicity of marketed pharmaceuticals. Mutat Res 488:151–169

    Article  CAS  Google Scholar 

  88. Guzelian PS, Victoroff MS, Halmes NC et al (2005) Evidence-based toxicology: a comprehensive framework for causation. Hum Exp Toxicol 24:161–201

    Article  CAS  Google Scholar 

  89. Klopman G, Dimayuga M, Talafous J (1994) META. 1. A program for the evaluation of metabolic transformation of chemicals. J Chem Inf Comput Sci 34:1320–1325

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Zakharov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zakharov, A., Lagunin, A. (2014). Computational Toxicology in Drug Discovery: Opportunities and Limitations. In: Gorb, L., Kuz'min, V., Muratov, E. (eds) Application of Computational Techniques in Pharmacy and Medicine. Challenges and Advances in Computational Chemistry and Physics, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9257-8_11

Download citation

Publish with us

Policies and ethics