Skip to main content

Strategies for Enhanced Production of Plant Secondary Metabolites from Cell and Organ Cultures

  • Chapter
  • First Online:
Production of Biomass and Bioactive Compounds Using Bioreactor Technology

Abstract

Plant cell and organ cultures have emerged as a potential source of secondary metabolites which are used as pharmaceuticals, agrochemicals, flavours, fragrances, colouring agents, pesticides and food additives. Various strategies have been developed over past decades for biomass accumulation and synthesis of valuable compounds. Biosynthesis of secondary metabolites are generally not directly associated with cell growth. For the enhanced production of secondary metabolites, selection of high-yielding cell or organ clones, optimization of medium and physical factors which regulate the growth and accumulation of biomass are usually done at first, then in the secondary metabolite production stage, various strategies such as elicitation, precursor feeding, replenishment of nutrients are conducted. Permeabilization and immobilization are also proved to be important for the biosynthesis of secondary metabolites in some cases. By these strategies, it is possible to produce enormous biomass with improved accumulation of secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2, 4-D:

2, 4-dichlorophenoxy acetic acid

2-iP:

2-isopentenyladenine

ABA:

Abscisic acid

B5:

Gamborg’s medium

BA:

Benzyladenine

DMSO:

Dimethylsulfoxide

DW:

Dry weight

FW:

Fresh weight

GA:

Gibberellic acid

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

LS:

Linsmaier and Skoog medium

MS:

Murashige and Skoog medium

PUFAs:

Polyunsaturated fatty acids

SH:

Schenk and Hildebrandt medium

References

  1. Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    PubMed  CAS  Google Scholar 

  2. Ramachandra Rao S, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    CAS  Google Scholar 

  3. Ravishankar GA, Venktaraman LV (1993) Role of plant cell culture in food biotechnology: current trends, limitation and future prospects. In: Prakah J, Pierik RLM (eds) Plant biotechnology: commercial prospects and problems. Oxford IBH Press, New Delhi, pp 255–274

    Google Scholar 

  4. Dornenburg H, Knorr D (1995) Strategies for improvement of secondary metabolite production in plant cell cultures. Enzym Microb Technol 17:674–684

    Google Scholar 

  5. Naik PM, Manohar SH, Praveen N, Upadhya V, Murthy HN (2012) Evaluation of bacoside A content in different accessions and various organ of Bacopa monnieri (L.) Wettst. J Herbs Spices Med Plants 18:387–395

    CAS  Google Scholar 

  6. Ramesha BT, Amna T, Ravikanth G, Gunaga RP, Vasudeva R, Ganeshaiah KN, Uma Shaanker R, Khajuria RK, Puri SC, Qazi GN (2008) Prospecting for camptothecines from Nothapodytes nimmoniana in the Western Ghats, South India: identification of high-yielding sources of camptothecin and new families of camptothecines. J Chromatographic Sci 46:362–368

    CAS  Google Scholar 

  7. Yamamoto T, Mizuguchi R, Yamada Y (1982) Selection of a high stable pigment producing strain in cultured Euphorbia milli cells. Theor Appl Genet 16:113–116

    Google Scholar 

  8. Dougall DK (1980) Nutrition and metabolism. In: Staba E (ed) Plant tissue culture as a source of biochemicals. CRR Press, Boca Raton, pp 21–58

    Google Scholar 

  9. Liang IF, Keng CI, Lim BP (2006) Selection of cell lines for the production of rosmarinic acid from cell suspension cultures of Orthosiphon stamineus Benth. In Vitro Cell Dev Biol Plant 42:538–542

    CAS  Google Scholar 

  10. Matsumoto T, Ikeda T, Kanno N, Kisaki T, Noguchi M (1980) Selection of high ubiquinone 10-producing strain of tobacco cultures by cell cloning technique. Agric Biol Chem 44:967–969

    CAS  Google Scholar 

  11. Zenk MH (1978) The impact of plant cell cultures on industry. In: Thorpe EA (ed) Frontiers of plant tissue culture. The International Association of Plant Tissue Culture, Calgary, pp 1–14

    Google Scholar 

  12. Stafford A, Morries P, Fowler MW (1986) Plant cell biotechnology: a perspective. Enzyme Microb Technol 8:19–23

    Google Scholar 

  13. Misawa M (1985) Production of useful plant metabolites. In: Fiechter A (ed) Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 59–88

    Google Scholar 

  14. Murshige T, Skoog A (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:23–28

    Google Scholar 

  15. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    PubMed  CAS  Google Scholar 

  16. Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    CAS  Google Scholar 

  17. Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127

    CAS  Google Scholar 

  18. Sivakumar G, Yu KW, Paek KY (2005) Production of biomass and ginsenosides form adventitious roots of Panax ginseng in bioreactor cultures. Eng Life Sci 5:333–342

    CAS  Google Scholar 

  19. Nagella P, Murthy HN (2011) In vitro production of gymnemic acid from cell suspension cultures of Gymnema sylvestre R. Br. Eng Life Sci 11:537–540

    CAS  Google Scholar 

  20. Praveen N, Murthy HN (2010) Establishment of cell suspension cultures of Withania somnifera for the production of withanolide A. Bioresour Technol 101:6735–6739

    Google Scholar 

  21. Yue CJ, Zhong JJ (2005) Impact of external calcium and calcium sensors on ginsenoside Rb1 biosynthesis by Panax notoginseng cells. Biotechnol Bioeng 89:444–452

    PubMed  CAS  Google Scholar 

  22. Xu YN, Xia XX, Zhong JJ (2013) Induced effect of Na+ on ganoderic acid biosynthesis in static liquid culture of Ganoderma lucidum via calcineurin signal transduction. Biotechnol Bioeng 110:1913–1923

    PubMed  CAS  Google Scholar 

  23. Wang Y, Weathers PJ (2007) Sugars proportionately affect artemisin production. Plant Cell Rep 26:1073–1081

    PubMed  Google Scholar 

  24. Park YG, Kim SJ, Kang YM, Jung HY, Prasad DT, Kim SW, Chung YG, Choi MS (2004) Production of ginkgolides and bilobalide from optimized the Ginkgo biloba cell cultures. Biotechnol Bioprocess Eng 9:41–46

    CAS  Google Scholar 

  25. Naik PM, Manohar SH, Praveen N, Murthy HN (2010) Effects of sucrose and pH levels on in vitro shoot regeneration from leaf explants of Bocopa monnieri and accumulation of bacoside A in regenerated shoots. Plant Cell Tiss Organ Cult 100:235–239

    Google Scholar 

  26. Zhang YH, Zhong JJ, Yu JT (1996) Enhancement of ginseng saponin production in suspension cultures of Panax notoginseng: manipulation of medium sucrose. J Biotechnol 51:49–56

    CAS  Google Scholar 

  27. Zhang YH, Zhong JJ, Yu JT (1995) Effect of osmotic pressure on cell growth and production of ginseng saponin and polysaccharide in suspension cultures of Panax notoginseng. Biotechnol Lett 17:1347–1350

    CAS  Google Scholar 

  28. Do CB, Cormier F (1990) Accumulation of anthocyanins enhanced by a high osmotic potential in grape (Vitis vinifera L.) cell suspensions. Plant Cell Rep 9:143–146

    PubMed  CAS  Google Scholar 

  29. Mukhejee SK, Sabapathi RB, Gupta N (1991) Low sugar and osmotic requirements for shoot regeneration fro leaf pieces of Solanum melangena L. Plant Cell Tiss Organ Cult 25:13–16

    Google Scholar 

  30. Naik PM, Manohar SH, Murthy HN (2011) Effects of macro elements and nitrogen source on biomass accumulation and bacoside A production from adventitious shoot cultures of Bacopa monnieri (L.). Acta Physiol Plant 33:1553–1557

    CAS  Google Scholar 

  31. Praveen N, Murthy HN, Chung IM (2011) Improvement of growth and gymnemic acid production by altering the macro elements concentration and nitrogen source supply in cell suspension cultures of Gymnema sylvestre R. Br. Ind Crops Prod 33:282–286

    CAS  Google Scholar 

  32. Praveen N, Murthy HN (2013) Withanolide A production form Withania somnifera hairy root cultures with improved growth by altering the concentrations of macro elements and nitrogen source in the medium. Acta Physiol Plant 35:811–816

    CAS  Google Scholar 

  33. Praveen N, Murthy HN (2011) Effects of macroelements and nitrogen source on biomass accumulation and withanolide-A production from cell suspension cultures of Withania somnifera (L.) Dunal. Plant Cell Tiss Organ Cult 104:119–124

    Google Scholar 

  34. Ravishankar GA, Sharma KS, Venktaraman LV, Kodyan AK (1988) Effect of nutritional stress on capcinin production in immobilized cell cultures of Capsicum annum. Curr Sci 57:381–383

    CAS  Google Scholar 

  35. Zenk MH, El-Shagi H, Shulte U (1975) Antraquinone production by cell suspension cultures of Morinda citrifolia. Plant Med (Suppl):79–101

    Google Scholar 

  36. Rajashekeran T, Ravishankar GA, Venkataraman LV (1991) Influence of nutrient stress on pyrethrin production by cultured cells of pyrethrum (Chrysanthemum cinerariaefolium). Curr Sci 60:705–707

    Google Scholar 

  37. Zhang YH, Zhong JJ, Yu JT (1996) Effect of nitrogen source on cell growth and production of ginseng saponin and polysaccharide in suspension cultures of Panax notoginseng. Biotechnol Prog 12:567–571

    CAS  Google Scholar 

  38. Hagimori M, Mstomoto T, Obi Y (1982) Studies on production of Digitalis cardenolides by plant tissue culture. Plant Physiol 69:653–656

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Liu S, Zhong JJ (1998) Phosphate effect on production of ginseng saponin and polysaccharide by cell suspension cultures of Panax ginseng and Panax quinquefolium. Proc Biochem 33:69–74

    CAS  Google Scholar 

  40. Ilieva M, Pavlov A (1996) Rosamarinic acid by Lavandula vera MM suspension: phosphate effect. Biotechnol Lett 18:913–916

    CAS  Google Scholar 

  41. Badaoui H, Morard P, Henry M (1996) Stimulation of the growth and solamargine production by Solanum paludosum multiple shoot cultures using a new culture medium. Plant Cell Tiss Organ Cult 45:153–158

    Google Scholar 

  42. Bramble JL, Graves DJ, Brodelius P (1991) Calcium and phosphate effects on growth and alkaloid production in Coffea arabica: experimental results and mathematical model. Biotechnol Bioeng 37:859–868

    PubMed  CAS  Google Scholar 

  43. Dedaldechanp F, Uhel C, Macheix JJ (1995) Enhancement of anthocyanin synthesis and dihydroflavonol reductase (DFR) activity in response to phosphate deprivation in grape cell suspension. Phytochemistry 40:1357–1360

    Google Scholar 

  44. Giri A, Narasu ML (2000) Transgenic hairy roots: recent trends and applications. Biotechnol Adv 18:1–22

    PubMed  CAS  Google Scholar 

  45. Vanhala L, Eeva M, Lapinjoki S, Hiltunen R, Oksman-Caldentey K (1998) Effect of growth regulators on transformed root cultures of Hyoscyamus muticus. J Plant Physiol 153:475–481

    CAS  Google Scholar 

  46. Weathers PJ, Bunk G, McCoy MC (2005) The effect of phytohormones on growth and artemisinin production in Artemisia annua hairy roots. In Vitro Cell Dev Biol Plant 41:47–53

    CAS  Google Scholar 

  47. DiCosmo F, Towers GHN (1984) Stress and secondary metabolism in cultured plant cells. In: Timmerman BN, Steelink FA, Lowewus FA (eds) Recent advances in phytochemistry, vol 18. Plenum, New York, pp 97–105

    Google Scholar 

  48. Mentell SH, Smith H (1984) Cultural factors that influence secondary metabolite accumulation in plant cell and tissue cultures. In: Mentell SH, Smith H (eds) Plant biotechnology. Cambridge University Press, Cambridge, pp 75–108

    Google Scholar 

  49. Seitz HU, Hinderer W (1988) Anthocyanins. In: Constabel F, Vasil I (eds) Cell culture and somatic cell genetics of plants, vol 5. Academic, San Diego, pp 49–76

    Google Scholar 

  50. Sahai OP, Shuler ML (1984) Environmental parameters influencing phenolics production by batch cultures of Nicotiana tabacum. Biotechnol Bioeng 26:111–120

    PubMed  CAS  Google Scholar 

  51. Mok MC, Gabelman W, Skoog F (1976) Carotenoid synthesis in tissue cultures of Daucus carota. J Am Soc Hortic Sci 101:442–449

    CAS  Google Scholar 

  52. Meyer HJ, van Staden J (1995) The in vitro production of anthocyanin from callus cultures of Oxalis linearis. Plant Cell Tiss Organ Cult 40:55–58

    CAS  Google Scholar 

  53. Zhong JJ, Bai Y, Wang SJ (1996) Effects of plant growth regulators on cell growth and ginsenoside saponin production by suspension cultures of Panax quinquefolium. J Biotechnol 45:227–234

    CAS  Google Scholar 

  54. Liu CZ, Wang YC, Ouyang F, Ye HC, Li GF (1997) Production of artemisinin in hairy root culture of Artemisia annua L. Biotechnol Lett 19:927–929

    CAS  Google Scholar 

  55. Bais HP, Sudha G, George J, Ravishankar GA (2001) Influence of exogenous hormones on growth in secondary metabolite production in hairy root cultures of Cichorium intybus L. cv. Lucknow local. In Vitro Cell Dev Biol Plant 37:293–299

    CAS  Google Scholar 

  56. Fulzele DP, Heble MR, Rao PS (1995) Production of terpenoids from Artemisia annua L. plantlet cultures in bioreactor. J Biotechnol 40:139–140

    CAS  Google Scholar 

  57. Biondi S, Lenzi C, Baraldi R, Bagni N (1997) Hormonal effects on growth and morphology of normal and hairy roots of Hyoscyamus muticus. J Plant Growth Regul 16:159–167

    CAS  Google Scholar 

  58. Robbins MP, Evans TE, Morries P (1996) The effect of plant growth regulators on growth, morphology and condensed tannin accumulation in transformed root cultures of Lotus corniculatus. Plant Cell Tiss Organ Cult 44:219–227

    CAS  Google Scholar 

  59. Kanokwaree K, Doran PM (1996) Influence of inoculums morphology on growth of Atropa belladonna hairy root in shake flaks. J Ferment Bioeng 94:378–381

    Google Scholar 

  60. Mavituna FS, Buyukalaca S (1996) Somatic embryogenesis of pepper in bioreactors: a study of bioreactor type and oxygen-uptake rate. Appl Microbiol Biotechnol 46:327–333

    CAS  Google Scholar 

  61. Berlin J, Sieg S, Strack D, Bokern M, Harms H (1986) Production of betalains by suspension cultures of Chenopodium rubrum L. Plant Cell Tiss Organ Cult 5:163–174

    CAS  Google Scholar 

  62. Lee CWT, Shuler ML (2000) The effect of inoculums density and conditioned medium on the production of ajmalicine and catharanthine from immobilized Cataranthus roseus cells. Biotechnol Bioeng 67:61–71

    PubMed  CAS  Google Scholar 

  63. Matubara K, Kitani S, Yoshioka T, Morimoto T, Fujita Y (1989) High density culture of Coptis japonica cells increases berberine production. J Chem Technol Biotechnol 46:61–69

    Google Scholar 

  64. Moreno PRH, Schlatmann JE, van der Heijden R, van Gulik WM, ten Hoopern HJG, Verpoorte R, Heijnen JJ (1993) Induction of ajmalicine formation and related enzyme activities in Catharanthus roseus cells: effect of inoculum density. Appl Microbiol Biotechnol 39:42–47

    PubMed  CAS  Google Scholar 

  65. Zhong JJ, Yoshida T (1995) High-density cultivation of Perilla frutescens cell suspensions for anthocyanin production: effects of sucrose concentration and inoculums size. Enzym Microbial Technol 17:1073–1079

    CAS  Google Scholar 

  66. Hahlbrock K, Wellmann E (1973) Light-independent induction of enzyme related to phenylpropanoid metabolism in cell suspension cultures form parsley. Biochem Biophys Acta 304:702–706

    PubMed  CAS  Google Scholar 

  67. Folk LR, Doran PM (1996) Influence of inoculum morphology on growth of hairy roots and production of tropane alkaloids. Biotechnol Lett 18:1099–1104

    Google Scholar 

  68. Jeong CS, Murthy HN, Hahn EJ, Lee HL, Paek KY (2009) Inoculum size and auxin concentration influence the growth of adventitious roots and accumulation of ginsenosides in suspension cultures of ginseng (Panax ginseng C. A. Meyer). Acta Physiol Plant 31:219–222

    CAS  Google Scholar 

  69. Morris P (1986) Regulation of product synthesis in cell cultures of Catharanthus roseus. Effect of culture temperature. Plant Cell Rep 5:427–429

    PubMed  CAS  Google Scholar 

  70. Scragg AH, Cresswell R, Ashton S, York A, Bond P, Fowler MW (1988) Growth and secondary metabolite product formation of a selected Cataranthus roseus cell line. Enzym Microbial Technol 10:532–536

    CAS  Google Scholar 

  71. Courtois D, Guren J (1980) Temperature response of Catharanthus reoseus cells cultivated in liquid medium. Plant Sci Lett 17:473–482

    CAS  Google Scholar 

  72. Toivonen L, Laakso S, Rosenqvist H (1992) The effect of temperature on growth, indole alkaloid accumulation and lipid composition of Catharanthus roseus cell suspension cultures. Plant Cell Rep 11:390–394

    PubMed  CAS  Google Scholar 

  73. Shohael AM, Ali MB, Yu KW, Hahn EJ, Paek KY (2006) Effect of temperature on secondary metabolites production and antioxidant enzyme activities in Eleutherococcus senticosus somatic embryos. Plant Cell Tiss Organ Cult 85:219–228

    CAS  Google Scholar 

  74. Yu KW, Murthy HN, Hahn EJ, Paek KY (2005) Ginsenoside production by hairy root cultures of Panax ginseng: influence of temperature and light quality. Biochem Eng J 23:53–56

    CAS  Google Scholar 

  75. Zhong JJ, Seki T, Kinoshita S, Yoshida T (1991) Effect of light irradiation on anthocyanin production by suspended culture of Perilla frutescens. Biotechnol Bioeng 38(6):653–658

    PubMed  CAS  Google Scholar 

  76. Chan LK, Koay SS, Boey PL, Bhatt A (2010) Effect of abiotic stress on biomass and anthocyanin production in cell cultures of Melastoma malabarthicum. Biol Res 43:127–135

    PubMed  CAS  Google Scholar 

  77. Krewzaler F, Hahlbrock K (1973) Flavonoid glycosides from illuminated cell suspension cultures of Petroselinum hortense. Phytochemistry 12:1149–1152

    Google Scholar 

  78. Kakegawa K, Hattori E, Koike K, Takeda K (1991) Induction of anthocyanin synthesis and related enzyme activities in cell cultures of Centaurea cyanus by UV-light irradiation. Phytochemistry 30:2271–2273

    CAS  Google Scholar 

  79. Shin KS, Murthy HN, Heo JW, Paek KY (2004) Induction of betalain pigmentation in hairy roots of red beat under different radiation sources. Biol Plant 47:149–152

    Google Scholar 

  80. Liu CZ, Guo C, Wang YC, Ouynag F (2002) Effect of light irradiation on hairy root growth and artemisinin biosynthesis of Artemisia annua L. Proc Biochem 38:581–585

    CAS  Google Scholar 

  81. Tabata M, Mizukami H, Hiraoka N, Konoshima M (1974) Pigment formation in callus cultures of Lithospermum erythrorhizon. Phytochemistry 13:927–932

    CAS  Google Scholar 

  82. Mulder-Krieger T, Verpoorte R, Svendse A, Cheffer J (1988) Production of essential oils and flavours in plant cell and tissue cultures. A review. Plant Cell Tiss Organ Cult 25:13–26

    Google Scholar 

  83. Nakamura M, Takeeuchi Y, Miyanaga K, Seki M, Furasaki S (1999) High anthocyanin accumulation in the dark by strawberry (Fragaria annassa) callus. Biotechnol Lett 21:695–699

    CAS  Google Scholar 

  84. Konczak-Islam I, Yoshinaga M, Nakatani M, Erahara N, Yamakawa O (2000) Establishment and characteristics of an anthocynin-producing cell line from sweet potato root. Plant Cell Rep 19:472–477

    CAS  Google Scholar 

  85. McDonald KA, Jackman AP (1989) Bioreactor studies of growth and nutrient utilization in alfalfa suspension cultures. Plant Cell Rep 8:455–458

    PubMed  CAS  Google Scholar 

  86. Praveen N, Murthy HN (2012) Synthesis of withanolide A depends on carbon source and medium pH in hairy root cultures of Withania somnifera. Ind Crops Prod 35:241–243

    CAS  Google Scholar 

  87. Mukundan U, Hjortso AM (1991) Growth and thiophene accumulation by hairy root cultures of Tagets petula in media of varying initial pH. Plant Cell Rep 9:627–630

    PubMed  CAS  Google Scholar 

  88. Sivakumar G, Yu KW, Hahn EJ, Paek KY (2005) Optimization of organic nutrients for ginseng hairy roots production in large-scale bioreactors. Curr Sci 89:641–649

    CAS  Google Scholar 

  89. Saenz-Carbonell LA, Maldonado-Mendoza IE, Moreno-Valenzuela O, Ciau-Uitz R, Lopez-Meyer M, Oropeza C, Loyola-Vargas VM (1993) Effect of the medium pH on the release of secondary metabolites from roots of Datura stramonium, Catharanhus roseus, and Tagetes patula cultured in vitro. Appl Biochem Biotechnol 38:257–267

    CAS  Google Scholar 

  90. Mukandan U, Bhide V, Singh G, Curtis WR (1998) pH-mediated release of betalains from transformed root cultures of Beta vulgaris L. Appl Microbiol Biotechnol 50:241–245

    Google Scholar 

  91. Murthy HN, Hahn EJ, Paek KY (2008) Adventitious root and secondary metabolism. Chin J Biotechnol 24:711–716

    CAS  Google Scholar 

  92. Baque MA, Moh SH, Lee EJ, Zhong JJ, Paek KY (2012) Production of biomass and useful compounds from adventitious roots of high-value added medicinal plants in bioreactor. Biotechnol Adv 30:1255–1267

    Google Scholar 

  93. Zhong JJ (2001) Biochemical engineering of the production of plant-specific secondary metabolites by cell suspension cultures. In: Scheper T (ed) Advances in biochemical engineering/biotechnology, vol 72. Springer, Berlin, pp 1–26

    Google Scholar 

  94. Wang SJ, Zhong JJ (1996) A novel centrifugal impeller bioreactor. I. Fluid circulation, mixing, and liquid velocity profiles. Biotechnol Bioeng 51:511–519

    PubMed  CAS  Google Scholar 

  95. Wang SJ, Zhong JJ (1996) A novel centrifugal impeller bioreactor. II. Oxygen transfer and power consumption. Biotechnol Bioeng 51:520–527

    PubMed  CAS  Google Scholar 

  96. Chattopadhyay S, Farkya S, Srivastava AK, Bisaria VS (2002) Bioprocess considerations for production of secondary metabolites. Biotechnol Bioprocess Eng 7:138–149

    CAS  Google Scholar 

  97. Georgiev MI, Weber J, Maciuk A (2009) Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl Microbiol Biotechnol 83:809–823

    PubMed  CAS  Google Scholar 

  98. Gao JW, Lee JM (1992) Effect of oxygen supply on the suspension culture of genetically modified tobacco cells. Biotechnol Prog 8:285–290

    PubMed  CAS  Google Scholar 

  99. Schlatmann JE, Moreno PRH, Vinke JL, Ten Hoopen HJG, Vepoorte R, Heijenen JJ (1997) Gaseous metabolites and the ajmalicine production rate in high density cell cultures of Catharanthus roseus. Enzym Microbiol Technol 29:107–115

    Google Scholar 

  100. Thanh NT, Murthy HN, Yu KW, Seung Jeong C, Hahn EJ, Paek KY (2006) Effect of oxygen supply on cell growth and saponin production in bioreactor cultures of Panax ginseng. J Plant Physiol 163:1337–1341

    PubMed  CAS  Google Scholar 

  101. Thanh NT, Murthy HN, Pandey DM, Yu KW, Hanh EJ, Paek KY (2006) Effect of carbon dioxide on cell growth and saponin production in suspension cultures of Panax ginseng. Biol Plant 50:752–754

    CAS  Google Scholar 

  102. Kobayashi Y, Fukai H, Tabata M (1991) Effect of carbon dioxide and ethylene on berberine production and cell browning in Thalictrum minus cell cultures. Plant Cell Rep 9:496–499

    PubMed  CAS  Google Scholar 

  103. Kim DM, Pedersen H, Chin CK (1991) Cultivation of Thalictrum rugosum cell suspension in an improved air-lift bioreactor: stimulatory effect of carbon dioxide and ethylene on alkaloid production. Biotechnol Bioeng 38:331–339

    PubMed  CAS  Google Scholar 

  104. Huang SY, Chou CJ (2000) Effect of gaseous composition on cell growth and secondary metabolite production in suspension culture of Stizolobium hassjoo cells. Bioprocess Eng 23:585–593

    CAS  Google Scholar 

  105. Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress singles on secondary metabolites in plants. Plant Signal Behav 6:1720–1731

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Yu KW, Gao W, Hahn EJ, Paek KY (2002) Jasmonic acid improving ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochem Eng J 11:211–215

    CAS  Google Scholar 

  107. Kim YS, Hahn EJ, Murthy HN, Paek KY (2004) Adventitious root growth and ginsenoside accumulation in Panax ginseng cultures as affected by methyl jasmonate. Biotechnol Lett 26:1619–1622

    PubMed  CAS  Google Scholar 

  108. Thanh NT, Murthy HN, Yu KW, Hahn EJ, Paek KY (2005) Methyl jasmonate elicitation enhanced synthesis of ginsenoside by cell suspension cultures of Panax ginseng in 5-l balloon type bubble bioreactor. Appl Microbiol Biotechnol 67:197–201

    PubMed  CAS  Google Scholar 

  109. Shohael AM, Murthy HN, Lee HL, Hahn EJ, Paek KY (2008) Increased eleutheroside production in Eleutherococcus sessiliflorus embryogenic suspension cultures with methyl jasmonate treatment. Biochem Eng J 38:270–273

    CAS  Google Scholar 

  110. Dong J, Wan G, Liang Z (2010) Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J Biotechnol 148:99–104

    PubMed  CAS  Google Scholar 

  111. Zhong JJ (2002) Plant cell culture for production of paclitaxel and other taxanes. J Biosci Bioeng 94:591–599

    PubMed  CAS  Google Scholar 

  112. Ketchum REB, Gison DM, Croteau RB, Shuler ML (1999) The kinetics of taxoid accumulation in cell suspension cultures of Texus following elicitation with methyl jasmonate. Biotechnol Bioeng 63:97–105

    Google Scholar 

  113. Aoyagi H, Kobayahi Y, Yamada K, Yokoyama M, Kusakar K, Tanaka H (2001) Efficient production of saikosaponins in Bupleurum falcatum root fragments combined with signal transduces. Appl Microbiol Biotechnol 57:482–488

    PubMed  CAS  Google Scholar 

  114. Shohael AM, Murthy HN, Lee HL, Hahn EJ, Paek KY (2007) Methyl jasmonate induced overproduction of eleutherosides in somatic embryos of Eleutherococcus senticosus cultures in bioreactors. Electron J Biotechnol 10:633–637

    Google Scholar 

  115. Qian ZG, Zhao ZJ, Xu YF, Qian XH, Zhong JJ (2004) Novel chemically synthesized hydroxyl-containing jasmonates as powerful inducing signals for plant secondary metabolism. Biotechnol Bioeng 86:809–816

    PubMed  CAS  Google Scholar 

  116. Qian ZG, Zhao ZJ, Xu YF, Qian XH, Zhong JJ (2005) Highly efficient strategy for enhancing taxoid production by repeated elicitation with a newly synthesized jasmonate in fed-batch cultivation of Taxus chinensis cells. Biotechnol Bioeng 90:516–521

    PubMed  CAS  Google Scholar 

  117. Hu FX, Huang J, Xu Y, Qian XH, Zhong JJ (2006) Responses of defense signals, biosynthetic gene transcription and taxoid biosynthesis to elicitation by a novel synthetic jasmonate in cell cultures of Taxus chinensis. Biotechnol Bioeng 94:1064–1071

    PubMed  CAS  Google Scholar 

  118. Gundlach H, Zenk MH (1998) Biological activity and biosynthesis of pentacyclic oxylipins: the linoleic acid pathway. Phytochemistry 47:527–537

    CAS  Google Scholar 

  119. Wasernack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action on plant stress response, growth and development. Ann Bot 100:681–697

    Google Scholar 

  120. Wu CH, Popova EV, Hahn EJ, Paek KY (2009) Linoleic acid and α-linolenic fatty acids affect biomass and secondary metabolite production and nutritive properties of Panax ginseng adventitious roots cultured in bioreactors. Biochem Eng J 47:109–115

    CAS  Google Scholar 

  121. Jeong CS, Murthy HN, Hahn EJ, Paek KY (2008) Improved production of ginsenosides in suspension cultures of ginseng by medium replenishment strategy. J Biosci Bioeng 105:288–291

    PubMed  CAS  Google Scholar 

  122. Wu CH, Murthy HN, Hahn EJ, Murthy HN (2007) Improved production of caffeic derivatives in suspension cultures of Echinacea purpurea by medium replenishment strategy. Arch Pharm Res 30:945–949

    PubMed  CAS  Google Scholar 

  123. Srinivasan V, Ryu DD (1993) Improvement of shikonin productivity in Lithospermum erythrorhizon cell cultures by altering carbon and nitrogen feeding strategy. Biotechnol Bioeng 42:793–799

    PubMed  CAS  Google Scholar 

  124. Wang C, Wu J, Mei X (2001) Enhanced taxol production and release in Taxus chinensis cell suspension cultures with selected organic solvents and sucrose feeding. Biotechnol Prog 17:89–94

    PubMed  Google Scholar 

  125. Contin A, van der Heijden R, Verpoorte R (1999) Effects of alkaloid precursor feeding and elicitation on the accumulation of secologanin in a Catharanthus roseus cell suspension culture. Plant Cell Tiss Organ Cult 56:111–119

    CAS  Google Scholar 

  126. Moreno PRH, van der Heijden R, Verpoorte R (1993) Effect of terpenoid precursor feeding and elicitation on formation of indole alkaloids in cell suspension cultures of Catharanthus roseus. Plant Cell Rep 12:702–705

    PubMed  CAS  Google Scholar 

  127. Fett-Neto AG, DiCosmo F (1996) Production of paclitaxel and related toxoids in cell cultures of Taxus cuspidata: perspectives for industrial applications. In: DiCosmo F, Misawa M (eds) Plant cell culture: secondary metabolism toward industrial application. CRC Press, New York, pp 139–166

    Google Scholar 

  128. Panda AK, Bisaria VS, Mishra S (1992) Alkaloid production by plant cell cultures of Holarrhena antidysenterica: II. Effect of precursor feeding and cultivation in stirred tank bioreactor. Biotechnol Bioeng 39:1052–1057

    PubMed  CAS  Google Scholar 

  129. Beaumont MD, Knorr D (1987) Effect of immobilizing agents and procedures on viability of cultured celery (Apium graveolens) cells. Biotechnol Lett 9:377–382

    CAS  Google Scholar 

  130. Knorr D, Teutonico RA (1986) Chitoson immobilization and permeabilization of Amaranthus tricolor cells. J Agric Food Chem 34:582–585

    Google Scholar 

  131. Brodelius PE (1988) Permeabilization of plant cells for release of intracellularly stored products: viability studies. Appl Microbiol Biotechnol 27:561–566

    CAS  Google Scholar 

  132. Dornenburg H, Knorr D (1993) Cellular permeabilization of cultured plant cell tissues by high electric pulses or ultra high pressure for recovery of secondary metabolites. Food Biotechnol 7:35–38

    Google Scholar 

  133. Lin L, Wu J, Ho KP, Qi S (2001) Ultrasound-induced physiological effects and secondary metabolite (saponin) production in Panax ginseng cell cultures. Ultrasound Med Biol 27:1147–1152

    PubMed  CAS  Google Scholar 

  134. DiCosmo F, Misawa M (1995) Plant cell and tissue culture: alternatives for metabolite production. Biotechnol Adv 13:425–453

    PubMed  CAS  Google Scholar 

  135. Nilsson K, Birnbaum S, Flygare S, Linse L, Schroder U, Jeppsson U, Larson P, Mosbach K, Brodelius P (1983) A general method for the immobilization of cells with preserved viability. Eur J Appl Microbiol Biotechnol 17:319–326

    CAS  Google Scholar 

  136. Brodelius P, Deus B, Mosbach K, Zenk MH (1979) Immobilized plant cells for the production of natural products. FEBS Lett 103:93–97

    PubMed  CAS  Google Scholar 

  137. DiCosmo F, Tanaka H, Neumann AW (1994) Cell immobilization by absorption to glass fiber mats. In: Veliky IA, McLean RJC (eds) Immobilized biosystems. Blackie Academic and Professional, New York, pp 263–287

    Google Scholar 

  138. Asada M, Shuler ML (1989) Stimulation of ajmalicine production from Catharanthus roseus: effects of adsorption in situ, elicitors, and alginate immobilization. Appl Microbiol Biotechnol 30:475–481

    Google Scholar 

  139. Archambault J, Volesky B, Kurz WGW (1989) Surface immobilization of plant cells. Biotechnol Bioeng 33:293–299

    PubMed  CAS  Google Scholar 

  140. Lindsey K, Yeoman MM (1984) The synthetic potential of immobilized cells of Capcisum frutescens Mill. cv. annuum. Planta 162:229–267

    Google Scholar 

  141. Haldimann D, Brodelius P (1987) Redirecting cellular metabolism of cultured plant cells: a model study with Coffea arabiaca. Phytochemistry 26:1431–1434

    CAS  Google Scholar 

  142. Dornenburg H (2004) Evaluation of immobilization effects on metabolic activities and productivity in plant cells processes. Process Biochem 39:1369–1375

    CAS  Google Scholar 

  143. Beiderbaeck R, Knoop B (1988) Enhanced production of secondary substances: addition of artificial accumulation sites to cultures. In: Bajaj YPS (ed) Medicinal and aromatic plants, vol 4, Biotechnology in agriculture and forestry. Springer-Verlag, Berlin, pp 123–135

    Google Scholar 

  144. Choi JW (1992) In situ berberine separation with immobilized adsorbent in cell suspension culture of Thalictrum rugosum. Kor J Chem Eng 9:18–134

    Google Scholar 

  145. Nigam SC, Wang HY (1990) Analysis of bioproduct separation using gel-enclosed adsorbents. AIChE J 36:1239–1248

    CAS  Google Scholar 

  146. Kown IC, Yoo YJ, Lee JH, Hyun JO (1998) Enhancement of taxol production by in situ recovery of product. Process Biochem 33:701–707

    Google Scholar 

  147. Shim JJ, Shin JH, Pai T, Chung IS, Lee HJ (1999) Permeabilization of elicited suspension culture of madder (Rubia akane Nakai) cells for release of anthraquinones. Biotechnol Lett 13:249–252

    CAS  Google Scholar 

  148. Miao GP, Zhu CS, Yang YQ, Feng MX, Ma ZQ, Feng JT, Zhang X (2013) Elicitation and in situ adsorption enhanced secondary metabolites production of Tripterygium wilfordii Hook. f. adventitious root fragment liquid cultures in shake flask and a modified bubble column bioreactor. Bioprocess Biosyst Eng. doi:10.1007/s00449-013-1033-0

    PubMed  Google Scholar 

  149. Giri A, Dhingra V, Giri CC, Sing A, Ward OP, Lakshmi Narasu M (2001) Biotransformation using plant cells, organ cultures and enzyme systems: current trends and future prospects. Biotechnol Adv 19:175–199

    PubMed  CAS  Google Scholar 

  150. Banerjee S, Singh S, Rahaman LU (2012) Biotransformation studies using hairy root cultures – a review. Biotechnol Adv 19:175–199

    Google Scholar 

  151. Kutney JP (1993) Plant cell culture combined with chemistry: a powerful route to complex natural products. Chem Res 26:559–566

    CAS  Google Scholar 

  152. Ramachandara Rao S, Ravishankar GA (2000) Biotransformation of protocatechuic aldehyde and caffeic acid to vanillin and capsaicin in freshly suspended and immobilized cell cultures of Capsicum frutescens. J Biotechnol 7:137–146

    Google Scholar 

  153. Li W, Koike K, Asada Y, Yoshikawa T, Nikaido T (2005) Biotransformation of paeonol by Panax ginseng root and cell cultures. J Mol Catalysis B Enzym 35:117–121

    CAS  Google Scholar 

  154. Verpoote R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25

    Google Scholar 

  155. Praveen N, Naik PM, Manohar SH, Nayeem A, Murthy HN (2009) In vitro regeneration of brahmi shoots using semisolid and liquid cultures and quantitative analysis of bacoside A. Acta Physiol Plant 31:723–728

    CAS  Google Scholar 

  156. Dandin VS, Murthy HN (2012) Enhanced in vitro multiplication of Nothapodytes nimmoniana Graham using semisolid and liquid cultures and estimation of camptothecin in the regenerated plants. Acta Physiol Plant 34:1381–1386

    CAS  Google Scholar 

  157. Murthy HN, Dijkstra C, Anthony P, White DA, Davey MR, Power JB, Hahn EJ, Paek KY (2008) Establishment of Withania somnifera hairy root cultures for the production of withanolide A. J Integr Plant Biol 50:975–981

    PubMed  CAS  Google Scholar 

  158. Prakash G, Srivastava AK (2007) Azadirachtin production in stirred tank reactors by Azadiracta indica suspension culture. Process Biochem 42:93–97

    CAS  Google Scholar 

  159. Zhang ZY, Zhong JJ (2004) Scale-up of centrifugal impeller bioreactor for hyperproduction of ginseng saponin and polysaccharide by high-density cultivation of Panax notoginseng cells. Biotechnol Prog 20:1076–1081

    PubMed  CAS  Google Scholar 

  160. Eibil R, Eibil D (2002) Bioreactors for plant cell and tissue cultures. In: Oksman-Caldentey KM, Barz W (eds) Plant biotechnology and transgenic plants. Marcel Dekker, New York, pp 165–199

    Google Scholar 

  161. Ebil R, Werner S, Eibl D (2010) Bag bioreactor based on wave induced motion: characteristics and applications. Adv Biochem Eng Biotechnol 115:55–87

    Google Scholar 

  162. Terrier B, Courtois D, Henault N, Cuvier A, Bastin M, Aknin A, Dubreuil J, Petiard V (2007) Two new disposable bioreactors for plant cell culture: the wave and undertow bioreactor and the slug bubble bioreactor. Biotechnol Bioeng 96:914–923

    PubMed  CAS  Google Scholar 

  163. Choi SM, Son SH, Yun SR, Kwon OW, Seon JH, Paek KY (2000) Pilot-scale culture of adventitious roots of ginseng in a bioreactor system. Plant Cell Tiss Organ Cult 62:187–193

    CAS  Google Scholar 

  164. Han J, Zhong JJ (2003) Effects of oxygen partial pressure on cell growth and ginsenoside and polysaccharide production in high density cell cultures of Panax notoginseng. Enzyme Microb Technol 32:498–503

    Google Scholar 

  165. Pan ZW, Wang HQ, Zhong JJ (2000) Scale-up study on suspension cultures of Taxus chinensis cells for production of taxane diterpene. Enzyme Microb Technol 27:714–723

    PubMed  CAS  Google Scholar 

  166. Zhong JJ, Fujiyama K, Seki T, Yoshida T (1994) A quantitative analysis of shear effects on cell suspension and cell culture of Perilla frutescens in bioreactors. Biotechnol Bioeng 44:649–654

    PubMed  CAS  Google Scholar 

  167. Zhong JJ, Pan ZW, Wang ZY, Wu J, Chen F, Takagi M, Yoshida T (2002) Effect of mixing time on taxoid production using suspension cultures of Taxus chinensis in a centrifugal impeller bioreactor. J Biosci Bioeng 94:244–250

    PubMed  CAS  Google Scholar 

  168. Wang W, Zhang ZY, Zhong JJ (2005) Enhancement of ginsenoside biosynthesis in high-density cultivation of Panax notoginseng cells by various strategies of methyl jasmonate elicitation. Appl Microbiol Biotechnol 67:752–758

    PubMed  CAS  Google Scholar 

  169. Wang W, Zhao ZJ, Xu Y, Qian XH, Zhong JJ (2006) Efficient induction of ginsenoside biosynthesis and alteration of ginsenoside heterogeneity in cell cultures of Panax notoginseng by using chemically synthesized 2-hydroxyethyl jasmonate. Appl Microbiol Biotechnol 70:298–307

    PubMed  CAS  Google Scholar 

  170. Zhong JJ, Yue CJ (2005) Plant cells: secondary metabolite heterogeneity and its manipulation. Biotechnology for the future. Adv Biochem Eng Biotechnol 100:53–88

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by a grant of Korea Healthcare Technology R&D project, Ministry of Health and Welfare, Republic of Korea (Grant No. A103017). Dr. H. N. Murthy is thankful to Ministry of Education, Science and Technology, Republic of Korea for the award of Brain pool Fellowship (131S-4-3-0523) and this paper was studied with the support of Ministry of Science, ICT and Planning (MSIP). JJZ acknowledges the support from National Natural Science Foundation of China (No. 21176153) and the Program of Shanghai Subject Chief Scientist (No. 14XD1402600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosakatte Niranjana Murthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Murthy, H.N., Dandin, V.S., Zhong, JJ., Paek, KY. (2014). Strategies for Enhanced Production of Plant Secondary Metabolites from Cell and Organ Cultures. In: Paek, KY., Murthy, H., Zhong, JJ. (eds) Production of Biomass and Bioactive Compounds Using Bioreactor Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9223-3_20

Download citation

Publish with us

Policies and ethics